Surface Modification with ECM-Inspired SDF-1α/Laminin-Loaded Nanocoating for Vascular Wound Healing.

ACS Appl Mater Interfaces

Stroke Biological Recovery Laboratory, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States.

Published: September 2017

Surface biomimetic modification with extra-cellular matrix (ECM)-derived biomolecules is an emerging potential method of accelerating the healing of vascular stent lesions. However, insufficient capacity of the constructed biofunctional layer in maintaining its long-term efficiency and preventing thrombus and neointimal hyperplasia continue to be major limitations in clinical application. On the basis of the structure and function of ECM, in this study, we constructed a novel stromal cell-derived factor-1α (SDF-1α)/laminin-loaded nanocoating on the 316L stainless steel (SS) surface to provide improved function in modulation of vascular remodeling. The modified surface was found to control delivery of biomolecules and exhibit promising potential to provide stage-adjusted treatment after injury. An in vitro biocompatibility study suggested that the constructed layer may effectively prevent thrombosis formation by inhibiting platelet adhesion and activation, while accelerating endothelium regeneration by inducing endothelial cell (EC) migration and endothelial progenitor cell (EPC) aggregation. An in vivo animal test further demonstrated that the nanocoating may prevent thrombus and neointimal hyperplasia after implantation for 3 months. Therefore, the ECM-inspired nanocoating described in this study is a promising novel approach for vascular stent surface modification.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b08516DOI Listing

Publication Analysis

Top Keywords

surface modification
8
sdf-1α/laminin-loaded nanocoating
8
vascular stent
8
thrombus neointimal
8
neointimal hyperplasia
8
surface
5
modification ecm-inspired
4
ecm-inspired sdf-1α/laminin-loaded
4
nanocoating
4
vascular
4

Similar Publications

Interfacial enzyme catalysis is widespread in both nature and industry. Granular starch is a sustainable and abundant raw material for which a rigorous correlation of the surface structure with enzymatic degradation is lacking. Here pullulanase-catalyzed debranching of 12 granular starches varying in amylopectin contents and branch chain contents and lengths is shown to present a biphasic relationship characteristic of the Sabatier principle.

View Article and Find Full Text PDF

This paper reports on several mechanisms of carbon aging in a hybrid lithium-ion capacitor operating with 1 mol L LiPF in an ethylene carbonate/dimethyl carbonate 1:1 vol/vol electrolyte. Carbon electrodes were subjected to a constant polarization protocol (i.e.

View Article and Find Full Text PDF

Recent Advances in Tetra-Coordinate Boron-Based Photoactive Molecules for Luminescent Sensing, Imaging, and Anticounterfeiting.

Precis Chem

January 2025

Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.

Tetra-coordinate boron-based fluorescent materials hold considerable promise across chemistry, biology and materials science due to their unique and precisely tunable optoelectronic properties. The incorporation of the heteroatom boron (B) enables these materials to exhibit high luminescence quantum yields, adjustable absorption and emission wavelengths, and exceptional photostability. This review examines the molecular design and applications of tetra-coordinate boron-based photoactive molecules, highlighting their roles in fluorescence sensing, anticounterfeiting, and imaging.

View Article and Find Full Text PDF

Introduction: In sports, 80% of all ankle injuries are sprains of the external compartment. Functional bandages are usually used preventively, specially in individuals with a history of lateral ankle injuries. To this day, the actual benefits of such taping remain unknown as important modifications are introduced in the ankle biomechanics.

View Article and Find Full Text PDF

The controllable regulation of immune and osteogenic processes plays a critical role in the modification of biocompatible materials for tissue regeneration. In this study, titanium dioxide-europium coatings (MAO/Eu) were prepared on the surface of a titanium alloy (Ti-6Al-4V) a one-step process combining microarc oxidation (MAO) and doping. The incorporation of Eu significantly improved the hydrophilic and mechanical properties of the TiO coatings without altering their morphology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!