A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Photoinduced Electron Transfer Switching Mechanism of a Naphthalimide Derivative with its Solvatochromic Behaviour: An Experimental and Theoretical Study with In Cell Investigations. | LitMetric

The sole existence of a t-bone-shaped naphthalimide derivative [2-(2-aminoethyl)-1H-benzo[de]isoquinoline-1,3(2H)dione] (NAP), which gives rise to a photoinduced electron transfer (PET) mechanism, has been established using a combination of experimental and theoretical studies. In parallel an in vitro-in cell PET mechanism has also been shown. To understand the photophysics of NAP, solvent studies have been carried out in different solvents. In addition, theoretical calculations have been conducted to explain the spectroscopic properties through optimized structures. A "turn off" PET mechanism has also been observed in the presence of specific metal ions, namely, Cr , Fe and Hg among a series of metal ions. Theoretical studies reveal that NAP-Cr , NAP-Fe and NAP-Hg have their HOMO energy states lying in between a HOMO-LUMO energy state of the t-bone-type NAP molecule. On the contrary, the HOMO state of the other metal ion-NAP conjugate (NAP-M ) does not lie in between the HOMO-LUMO energy gap of the t-bone-type NAP molecule. Coupled with in vitro studies, in cell investigations reveal an enhancement of fluorescence intensity of NAP upon cytosolic metal sensing. Furthermore, a very high cell viability of NAP treated cells as tested by MTT assay and a fast permeation of the said compound as revealed by flow cytometry suggest NAP to be a potential candidate in metal sensing and bioimaging applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201702414DOI Listing

Publication Analysis

Top Keywords

pet mechanism
12
photoinduced electron
8
electron transfer
8
naphthalimide derivative
8
experimental theoretical
8
cell investigations
8
theoretical studies
8
metal ions
8
homo-lumo energy
8
t-bone-type nap
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!