Long Noncoding RNAs in Pluripotency of Stem Cells and Cell Fate Specification.

Adv Exp Med Biol

Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India.

Published: January 2018

Since the annotation of the mouse genome (FANTOM project) [Kawai J et al (2001) Functional annotation of a full-length mouse cDNA collection. Nature 409(6821):685-690] or the human genome [An integrated encyclopedia of DNA elements in the human genome. (2012) Nature 489(7414):57-74; Harrow J et al (2012) GENCODE: the reference human genome annotation for the ENCODE project. Genome Res 22(9):1760-1774], the roles of long noncoding RNAs in coordinating specific signaling pathways have been established in a wide variety of model systems. They have emerged as crucial and key regulators of stem cell maintenance and/or their differentiation into different lineages. In this chapter we have discussed the recently discovered lncRNAs that have been shown to be necessary for the maintenance of pluripotency of both mouse and human ES cells. We have also highlighted the different lncRNAs which are involved in directed differentiation of stem cells into any of the three germ layers. In recent years stem cell therapies including bone marrow transplantation are becoming an integral part of modern medicinal practices. However, there are still several challenges in making stem cell therapy more reproducible so that the success rate reaches a high percentage in the clinic. It is hoped that understanding the molecular mechanisms pertaining to the role of these newly discovered lncRNAs in the differentiation process of stem cells to specific lineages should pave the way to make stem cell therapy and regenerative medicine as a normal clinical practice in the near future.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-981-10-5203-3_8DOI Listing

Publication Analysis

Top Keywords

stem cell
16
stem cells
12
human genome
12
long noncoding
8
noncoding rnas
8
discovered lncrnas
8
cell therapy
8
stem
7
cell
5
genome
5

Similar Publications

A Japanese woman with Li-Fraumeni syndrome in her 40s underwent comprehensive genetic profiling accompanied by germline data using the Oncoguide NCC Oncopanel, but no germline pathogenic variants in the tumor suppressor gene TP53 were detected. However, careful examination of additional data in the report suggested the presence of a large TP53 deletion. Custom targeting next-generation sequencing and nanopore sequencing revealed a 3.

View Article and Find Full Text PDF

Revolutionizing acute myeloid leukemia treatment: a systematic review of immune-based therapies.

Discov Oncol

January 2025

Division of Hematology/Oncology, The University of Texas Health Sciences Center at Houston, McGovern Medical School, 6431 Fannin Street, MSB 5.216, Houston, TX, 77030, USA.

The established protocol for the management of acute myeloid leukemia (AML) has traditionally involved the administration of induction chemotherapy, followed by consolidation chemotherapy, and subsequent allogeneic stem cell transplantation for eligible patients. However, the prognosis for individuals with relapsed and refractory AML remains unfavorable. In response to the necessity for more efficacious therapeutic modalities, targeted immunotherapy has emerged as a promising advancement in AML treatment.

View Article and Find Full Text PDF

The causal association between cardiovascular proteins and diabetic nephropathy: a Mendelian randomization study.

Int Urol Nephrol

January 2025

Department of Nephrology, Jiangxi Medical College, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China.

Purpose: To clarify the causal association between cardiovascular proteins and diabetic nephropathy (DN) in Europeans.

Methods: The large genome-wide association study data of cardiovascular proteins and DN were used for this two-sample Mendelian randomization (MR) analysis. We took the Inverse variance weighted (IVW) as the primary method.

View Article and Find Full Text PDF

ISCT MSC committee statement on the US FDA approval of allogenic bone-marrow mesenchymal stromal cells.

Cytotherapy

January 2025

Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, Division of Hematology, University of Toronto, Toronto, Ontario, Canada. Electronic address:

The December 2024 US Food and Drug Administration (FDA) approval of Mesoblast's Ryoncil (remestemcel-L-rknd)-allogeneic bone marrow mesenchymal stromal cell (MSC(M)) therapy-in pediatric acute steroid-refractory graft-versus-host-disease finally ended a long-lasting drought on approved MSC clinical products in the United States. While other jurisdictions-including Europe, Japan, India, and South Korea-have marketed autologous or allogeneic MSC products, the United States has lagged in its approval. The sponsor's significant efforts and investments, working closely with the FDA addressing concerns regarding clinical efficacy and consistent MSC potency through an iterative process that spanned several years, was rewarded with this landmark approval.

View Article and Find Full Text PDF

Neovascular age-related macular degeneration and diabetic macular edema are leading causes of vision-loss evoked by retinal neovascularization and vascular leakage. The glycoprotein microfibrillar-associated protein 4 (MFAP4) is an integrin αβ ligand present in the extracellular matrix. Single-cell transcriptomics reveal MFAP4 expression in cell-types in close proximity to vascular endothelial cells including choroidal vascular mural cells and retinal astrocytes and Müller cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!