The aim of this work was to simulate an overmatch ballistic event against a head wearing a helmet. The experiments were designed to understand how layers of bone (or synthetic bone), synthetic skin and currently used helmet materials influence the behaviour of full metal jacket mild steel core (FMJ MSC) 7.62 × 39 mm bullets, impacting on targets with a mean velocity of 650 m/s. Bullet behaviour within 10% (by mass) gelatine blocks was assessed by measurements made of the temporary cavity within the blocks using high-speed video and of the permanent cavity by dissecting blocks post firing. While ANOVA did not find significant difference at the 0.05 level in the mean values of most of the measurements, there was a significant difference in neck length within the gelatine blocks. The addition of material layers did produce greater variability in the temporary cavity measurements under some of the conditions. One of the synthetic bone polymers with a synthetic skin layer produced similar results within the gelatine blocks to the horse scapulae (with residual tissue) and may be suitable for future ballistic experiments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5635073 | PMC |
http://dx.doi.org/10.1007/s00414-017-1665-8 | DOI Listing |
Mol Ecol
January 2025
Department of Biology, Aarhus University, Aarhus C, Denmark.
Understanding interspecific introgressive hybridisation and the biological significance of introgressed variation remains an important goal in population genomics. European (Anguilla anguilla) and American eel (A. rostrata) represent a remarkable case of hybridisation.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Fisheries, Faculty of Fisheries and the Environment, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4913815739, Iran.
One of the main limitations of biopolymers compared to petroleum-based polymers is their weak mechanical and physical properties. Recent improvements focused on surmounting these constraints by integrating nanoparticles into biopolymer films to improve their efficacy. This study aimed to improve the properties of gelatin-chitosan-based biopolymer layers using zinc oxide (ZnO) and graphene oxide (GO) nanoparticles combined with spermidine to enhance their mechanical, physical, and thermal properties.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Ji'nan 250012, China. Electronic address:
Dry socket, a common painful complication after tooth extraction, is typically caused by improper blood clot formation or its premature dislodgement, often exacerbated by bacterial infections. Traditional gelatin sponges, widely used as clinical fillers, provide favorable biocompatibility and hemostatic support but suffer from suboptimal hemostatic efficiency, lack of antimicrobial properties, and insufficient anticoagulant factors, which increase the risk of dry socket. Addressing these limitations, a novel tannic acid cross-linked gelatin sponge has been developed using directional lyophilization.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.
Macromol Biosci
January 2025
Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510062, China.
Soft tissue integration (STI) around dental implants determines their long-term success, and the key is to immediately construct a temporary soft tissue-like barrier to prevent bacterial invasion after implantation and then, promote STI. In response to this need, an injectable multi-crosslinked hydrogel (MCH) with abilities of self-healing, anti-swelling, degradability, and dry/wet adhesion to soft tissue/titanium is developed using gallic acid-graft-chitosan, oxidized sodium alginate, gelatin, and Cu with water and borax solution as solvents, whose properties can be controlled by adjusting its composition and ratio. MCH can not only immediately build a sealing barrier to block the bacterial invasion in the oral simulation environment but also deliver outstanding antibacterial efficacy through the synergism of trapping bacteria and releasing bactericidal agents such as chitosan, gallic acid, aldehyde, and Cu.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!