Pyruvate dehydrogenase kinase (PDK) is known as a gatekeeper directing the carbon flux into glycolysis via inhibition of the pyruvate dehydrogenase complex. During syncytialization of placental trophoblasts, both ATP production and oxygen consumption are increased to meet enhanced energetic demands by syntiotrophoblasts. We hypothesized that down-regulation of PDK expression may play a central role in the switch from glycolysis to oxidative phosphorylation (OXPHOS) during syncytialization. By using primary human trophoblasts, we demonstrated that PDK4 was the dominating PDK isoform in human cytotrophoblasts, and its abundance was substantially decreased upon syncytialization, which was accompanied by decreases in lactate production and increases in ATP production. Knock-down of PDK4 expression reduced lactate production and increased ATP production, while over-expression of PDK4 increased lactate production and decreased ATP production, indicating that down-regulation of PDK4 is key to the shift from glycolysis to OXPHOS during syncytialization. Moreover, human chorionic gonadotropin (hCG)/cAMP/PKA pathway was demonstrated to be involved in the down-regulation of PDK4 expression upon syncytialization. Taken together, our findings disclosed that down-regulation of PDK4 is critical for the metabolic shift from glycolysis to OXPHOS during syncytialization, which may be a prerequisite for the proper implementation of syncytiotrophoblast functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5559526PMC
http://dx.doi.org/10.1038/s41598-017-09163-8DOI Listing

Publication Analysis

Top Keywords

down-regulation pdk4
16
atp production
16
oxphos syncytialization
12
lactate production
12
pdk4 critical
8
syncytialization human
8
placental trophoblasts
8
pyruvate dehydrogenase
8
pdk4 expression
8
shift glycolysis
8

Similar Publications

Background: Previous studies have demonstrated the role of N6-methyladenosine (mA) RNA methylation in various biological processes, our research is the first to elucidate its specific impact on LCAT mRNA stability and adipogenesis in poultry.

Results: The 6 100-day-old female chickens were categorized into high (n = 3) and low-fat chickens (n = 3) based on their abdominal fat ratios, and their abdominal fat tissues were processed for MeRIP-seq and RNA-seq. An integrated analysis of MeRIP-seq and RNA-seq omics data revealed 16 differentially expressed genes associated with to differential mA modifications.

View Article and Find Full Text PDF

Aims: The xanthone dimer 12-O-deacetyl-phomoxanthone A (12-ODPXA) was extracted from the secondary metabolites of the endophytic fungus Diaporthe goulteri. The 12-ODPXA compound exhibited anticancer properties in murine lymphoma; however, the anti-ovarian cancer (OC) mechanism has not yet been explored. Therefore, the present study evaluated whether 12-ODPXA reduces OC cell proliferation, metastasis, and invasion by downregulating pyruvate dehydrogenase kinase (PDK)4 expression.

View Article and Find Full Text PDF

Background: Ginsenoside Rh2 (G-Rh2), a steroidal compound extracted from roots of ginseng, has been extensively studied in tumor therapy. However, its specific regulatory mechanism in non-small cell lung cancer (NSCLC) is not well understood. Pyruvate dehydrogenase kinase 4 (PDK4), a central regulator of cellular energy metabolism, is highly expressed in various malignant tumors.

View Article and Find Full Text PDF

High glucose promotes benign prostatic hyperplasia by downregulating PDK4 expression.

Sci Rep

October 2023

Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.

As men age, a growing number develop benign prostatic hyperplasia (BPH). According to previous research, diabetes may be a risk factor. Pyruvate dehydrogenase kinase 4 (PDK4) is closely related to glucose metabolism and plays a role in the onset and progression of numerous illnesses.

View Article and Find Full Text PDF

The cellular events leading to the development of the woody breast myopathy in broiler breast muscle are unclear. Affected woody breast muscle exhibits muscle fiber degeneration/regeneration, connective tissue accumulation, and adverse morphological changes in mitochondria. Ribonucleotide reductase (RNR) is an enzyme for the synthesis of dNTP, which is important for mitochondria DNA content (mtDNA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!