Download full-text PDF |
Source |
---|
Viruses
November 2024
Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
Recently, using a panel of recombinant CHO cell lines, we identified the coxsackie and adenovirus receptor (CAR) and histo-blood group antigens (HBGAs) or sialic acid as the minimum requirement for susceptibility to rhesus enteric calicivirus (ReCV) infections. While ReCVs cause lytic infection in LLC-MK2 cells, recombinant CHO (rCHO) cell lines did not exhibit any morphological changes upon infection. To monitor infectious virus production, rCHO cell cultures had to be freeze-thawed and titrated on LLC-MK2 monolayers.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Department of Preventive Medicine and Public Health, Semmelweis University, 1085 Budapest, Hungary.
Adenovirus (AdV) infection has been rarely documented in cats and other felids. Partial sequences of the hexon and fiber genes of a Hungarian feline adenovirus isolate (FeAdV isolate) showed a close relationship to human AdV (HAdV) type C1. Further molecular and biological characterization is reported here.
View Article and Find Full Text PDFmedRxiv
September 2024
Department of Virology, Faculty of Medicine and Health Technology, Tampere University, Finland.
Curr Res Microb Sci
July 2024
Manipal Institute of Virology, Manipal Academy of Higher Education (MAHE), Manipal, India.
In the wake of the COVID-19 pandemic, respiratory tract infections have emerged as a significant global threat, yet their impact on public health was previously underappreciated. This study investigated the antiviral efficacy of the nano-coating agent BARRIER90, composed of silicon-quaternary ammonium compound and a naturally derived biopolymer, against three distinct respiratory viruses: Influenza A (H1N1), Adenovirus Type 1, and Enterovirus-Coxsackie B1. BARRIER90 exhibited robust and sustained virucidal activity, persisting up to 90 days post-coating, against the enveloped virus, Influenza A, with significant reduction in viral plaques.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2024
Department of Biological and Environmental Sciences and Nanoscience Center, University of Jyväskylä, Jyväskylä 40500, Finland.
The ongoing challenge of viral transmission, exemplified by the Covid pandemic and recurrent viral outbreaks, necessitates the exploration of sustainable antiviral solutions. This study investigates the underexplored antiviral potential of wooden surfaces. We evaluated the antiviral efficacy of various wood types, including coniferous and deciduous trees, against enveloped coronaviruses and nonenveloped enteroviruses like coxsackie virus A9.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!