The extent to which defective innate immune responses contribute to chronic obstructive pulmonary disease (COPD) is not fully understood. Pulmonary surfactant protein A (SP-A) plays an important role in regulating innate immunity in the lungs. In this study, we hypothesised that cigarette smoke (CS) and its component acrolein might influence pulmonary innate immunity by affecting the function of SP-A. Indeed, acrolein-modified SP-A was detected in the lungs of mice exposed to CS for 1 week. To further confirm this finding, recombinant human SP-A (hSP-A) was incubated with CS extract (CSE) or acrolein and then analysed by western blotting and nanoscale liquid chromatography-matrix-assisted laser desorption/ionisation time-of-flight tandem mass spectrometry. These analyses revealed that CSE and acrolein induced hSP-A oligomerisation and that acrolein induced the modification of six residues in hSP-A: His39, His116, Cys155, Lys180, Lys221, and Cys224. These modifications had significant effects on the innate immune functions of hSP-A. CSE- or acrolein-induced modification of hSP-A significantly decreased hSP-A's ability to inhibit bacterial growth and to enhance macrophage phagocytosis. These findings suggest that CS-induced structural and functional defects in SP-A contribute to the dysfunctional innate immune responses observed in the lung during cigarette smoking.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5559459 | PMC |
http://dx.doi.org/10.1038/s41598-017-08588-5 | DOI Listing |
Biosci Microbiota Food Health
August 2024
Local Brand R&D, SSP Co., Ltd., Opera City Tower, 3-20-2 Nishi Shinjuku, Shinjuku-ku, Tokyo 163-1488, Japan.
Phagocytosis by immunocompetent cells is a key role in the biological defense mechanism and is the starting point of the reaction that leads from innate to acquired immunity. Several studies have demonstrated that some lactic acid bacteria strains activate the innate and acquired immune systems of the host. However, further investigation of the mechanism and improvement of usefulness is needed because the effect differs depending on the type and strain of lactic acid bacteria.
View Article and Find Full Text PDF2'- -ribose methylation of the first transcribed base (adenine or A in SARS-CoV-2) of viral RNA mimics the host RNAs and subverts the innate immune response. How nsp16, with its obligate partner nsp10, assembles on the 5'-end of SARS-CoV-2 mRNA to methylate the A has not been fully understood. We present a ∼ 2.
View Article and Find Full Text PDFThe stress-induced keratin intermediate filament gene/protein (K16) is spatially restricted to the suprabasal compartment of the epidermis and extensively used as a biomarker for psoriasis, hidradenitis suppurativa, atopic dermatitis and other inflammatory disorders. However, its role in these conditions remains poorly defined. Here we show that K16 negatively regulates type-I interferon (IFN) signaling and innate immune responses.
View Article and Find Full Text PDFUnlabelled: Crosstalk between autophagy, host cell death, and inflammatory host responses to bacterial pathogens enables effective innate immune responses that limit bacterial growth while minimizing coincidental host damage. ( ) thwarts innate immune defense mechanisms in alveolar macrophages (AMs) during the initial stages of infection and in recruited bone marrow-derived cells during later stages of infection. However, how protective inflammatory responses are achieved during infection and the variation of the response in different macrophage subtypes remain obscure.
View Article and Find Full Text PDFUnlabelled: Mycobacterial cell envelopes are rich in unusual lipids and glycans that play key roles during infection and vaccination. The most abundant envelope glycolipid is trehalose dimycolate (TDM). TDM compromises the host response to mycobacterial species via multiple mechanisms, including inhibition of phagosome maturation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!