Hallmarks of chronic neurodegenerative disease include progressive synaptic loss and neuronal cell death, yet the cellular pathways that underlie these processes remain largely undefined. We provide evidence that dual leucine zipper kinase (DLK) is an essential regulator of the progressive neurodegeneration that occurs in amyotrophic lateral sclerosis and Alzheimer's disease. We demonstrate that DLK/c-Jun N-terminal kinase signaling was increased in mouse models and human patients with these disorders and that genetic deletion of DLK protected against axon degeneration, neuronal loss, and functional decline in vivo. Furthermore, pharmacological inhibition of DLK activity was sufficient to attenuate the neuronal stress response and to provide functional benefit even in the presence of ongoing disease. These findings demonstrate that pathological activation of DLK is a conserved mechanism that regulates neurodegeneration and suggest that DLK inhibition may be a potential approach to treat multiple neurodegenerative diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1126/scitranslmed.aag0394DOI Listing

Publication Analysis

Top Keywords

dual leucine
8
leucine zipper
8
zipper kinase
8
kinase signaling
8
neurodegenerative disease
8
dlk
5
loss dual
4
signaling protective
4
protective animal
4
animal models
4

Similar Publications

A soluble TLR5 is involved in the flagellin-MyD88-mediated immune response via regulation rather than activation in large yellow croaker (Larimichthys crocea).

Comp Biochem Physiol B Biochem Mol Biol

December 2024

State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China. Electronic address:

Toll-like receptor 5 (TLR5) plays a crucial role in the immune response through recognizing bacterial flagellin. Some teleosts possess two forms of TLR5, including a canonical membrane TLR5 (TLR5M) ortholog and a piscine soluble TLR5 (TLR5S). In this report, the full-length cDNA sequences of Larimichthys crocea TLR5M (LcTLR5M) and TLR5S (LcTLR5S) were identified.

View Article and Find Full Text PDF

Introduction: Neonatal sepsis (NS) seriously threatens the health of infants. Coactosin-like protein 1 (COTL1) is a binding protein of F-actin and 5-lipoxygenase which is known to regulate the progression of neonatal sepsis. Nevertheless, the function of COTL1 in NS is not clear.

View Article and Find Full Text PDF

The role of inflammasomes in hepatocellular carcinoma: Mechanisms and therapeutic insights.

Ann Hepatol

December 2024

Scientific Direction, National Institute of Gastroenterology, "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy. Electronic address:

Hepatocellular carcinoma is among the most frequent forms of primary liver cancer and develops within a context of chronic inflammation, frequently associated with a multitude of risk factors, including viral infections, metabolic dysfunction-associated fatty liver disease, metabolic dysfunction-associated steatohepatitis and liver fibrosis. The tumor microenvironment is crucial for the progression of HCC, as immune cells, tumor-associated fibroblasts and hepatic stellate cells interact to promote chronic inflammation and tumor spread. Inflammasomes, the multiprotein complexes that launch the innate immune response, emerge as important mediators in the pathogenesis of HCC.

View Article and Find Full Text PDF

Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on an analysis of the literature regarding the effects of β-Hydroxy-β-Methylbutyrate (HMB). The following 12 points have been approved by the Research Committee of the Society: 1. HMB is a metabolite of the amino acid leucine that is naturally produced in both humans and other animals.

View Article and Find Full Text PDF

Dual leucine zipper kinase (DLK), expressed primarily in neuronal cells, is a regulator of neuronal degeneration in response to cellular stress from chronic disease or neuronal injury. This makes it an attractive target for the treatment of neurodegenerative diseases such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis, and neuronal injury, such as chemotherapy-induced peripheral neuropathy. Here, we describe the discovery of a potent, selective, brain-penetrant DLK inhibitor, KAI-11101 ().

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!