Background: Shinrin-yoku (experiencing the forest atmosphere or forest bathing) has received increasing attention from the perspective of preventive medicine in recent years. Some studies have reported that the forest environment decreases blood pressure. However, little is known about the possibility of anti-hypertensive applications of Shinrin-yoku. This study aimed to evaluate preventive or therapeutic effects of the forest environment on blood pressure.
Methods: We systematically reviewed the medical literature and performed a meta-analysis.Four electronic databases were systematically searched for the period before May 2016 with language restriction of English and Japanese. The review considered all published, randomized, controlled trials, cohort studies, and comparative studies that evaluated the effects of the forest environment on changes in systolic blood pressure. A subsequent meta-analysis was performed.
Results: Twenty trials involving 732 participants were reviewed. Systolic blood pressure of the forest environment was significantly lower than that of the non-forest environment. Additionally, diastolic blood pressure of the forest environment was significantly lower than that of the non-forest environment.
Conclusions: This systematic review shows a significant effect of Shinrin-yoku on reduction of blood pressure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5559777 | PMC |
http://dx.doi.org/10.1186/s12906-017-1912-z | DOI Listing |
Land use change can significantly alter the proportion of soil aggregates, thereby influencing aggregate stability and distribution of soil organic carbon (SOC). However, there is minimal research on the variations in the distribution of soil aggregates, aggregate stability, and SOC in soil aggregates following land use change from farmland (FL) to forest and grassland in the Loess Plateau region of China. Select six land use patterns (farmland (FL), abandoned cropland (ACL), Medicago sativa (MS), natural grassland (NG), Picea asperata Mast.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Iran.
This study investigates the potential impacts of climate change on the distribution of Iranian amphibian species and identifies refugia and biodiversity hotspots to inform effective conservation strategies. The study employed ensemble species distribution models to assess the impacts of climate change on 19 Iranian amphibian species. We analyzed future scenarios (2041-2060 & 2081-2100) under a high-emission pathway to identify potential range shifts and refugia (areas with stable or newly suitable climate).
View Article and Find Full Text PDFSci Rep
December 2024
School of Environmental Science, The University of Shiga Prefecture, Hassakacho, Hikone, 2500, 522-8533, Japan.
Mangrove forests are increasingly recognized as vital blue carbon ecosystems due to their high carbon sequestration capacity, primarily through the accumulation of soil organic carbon (SOC). Recent research highlights that, in addition to SOC, dissolved inorganic carbon (DIC), particularly in the form of bicarbonate (HCO₃⁻), plays a crucial role in carbon sequestration by being exported from these ecosystems to adjacent coastal waters. This study aims to investigate the previously unexamined mechanisms behind bicarbonate production in mangrove soils.
View Article and Find Full Text PDFSci Rep
December 2024
Institute for Forest Resources and Environment of Guizhou, College of Forestry, Guizhou University, Guiyang, 550025, Guizhou, China.
This study aims to explore the low phosphorus (P) tolerance of saplings from different Gleditsia sinensis Lam. families. It also seeks to screen for Gleditsia sinensis families with strong low P tolerance and identify key indicators for evaluating their tolerance.
View Article and Find Full Text PDFSci Rep
December 2024
Gateway Antarctica, University of Canterbury, Christchurch, New Zealand.
The Tibetan Plateau is home to numerous glaciers that are important for freshwater supply and climate regulation. These glaciers, which are highly sensitive to climatic variations, serve as vital indicators of climate change. Understanding glacier-fed hydrological systems is essential for predicting water availability and formulating climate adaptation strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!