Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Lower limb exoskeletons are being used to assist people with movement disorders during activities of daily living or rehabilitation. However, providing a natural interface that automatically adapts to the patient's movement limitations remains an open challenge. In this paper, we present a control implementation that combines a compliant actuator technology with the concept of tacit learning to improve the synchronisation between the exoskeleton and the user during locomotion. We show that this implementation can be effectively used to easily modulate the joint stiffness that is perceived by the user during locomotion. This scheme set the base for the implementation of an automatically shared control between the exoskeleton and its user.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/ICORR.2017.8009426 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!