Modulation of stiffness provides a great deal of advantage in the way humans interact with the environment, and is very important in successfully performing activities of daily living. In the context of human-machine interactions, stiffness control could provide a safer interaction, especially when dealing with unpredictable environment. In this paper we propose a user-modulated stiffness and position control for the wrist flexion/extension degree of freedom while physically coupled to a haptic device. A virtual position tracking experiment in a varying external force field is designed in order to test the performance of the control strategy with and without co-contraction techniques. Tracking accuracy and smoothness of motion indicate better performance when subjects use co-contraction techniques, and the difference in the two types of experiment is also statistically significant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/ICORR.2017.8009335 | DOI Listing |
Nat Commun
January 2025
Morphing Matter Lab, Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
Compliant mechanisms with reconfigurable degrees of freedom are gaining attention in the development of kinesthetic haptic devices, robotic systems, and mechanical metamaterials. However, available devices exhibit limited programmability and form-customizability, restricting their versatility. To address this gap, we propose a metastructure concept featuring reconfigurable motional freedom and tunable stiffness, adaptable to various form factors and applications.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
A recurring challenge in extracting energy from ambient motion is that devices must maintain high harvesting efficiency and a positive user experience when the interface is undergoing dynamic compression. We show that small amphiphiles can be used to tune friction, haptics, and triboelectric properties by assembling into specific conformations on the surfaces of materials. Molecules that form multiple slip planes under pressure, especially through π-π stacking, produce 80 to 90% lower friction than those that form disordered mesostructures.
View Article and Find Full Text PDFWearable Technol
December 2024
Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Nuevo Leon, Mexico.
This paper explores the integration of haptic gloves and virtual reality (VR) environments to enhance industrial training and operational efficiency within the framework of Industry 4.0 and Industry 5.0.
View Article and Find Full Text PDFSoft Robot
January 2025
State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China.
The high degree of freedom (DoF) shape morphing widely exists in biology for mimicry, camouflage, and locomotion. Currently, a lot of bionic soft/flexible actuators and robots with shape-morphing functions have been developed to realize conformity, grasp, and movement. Among these solutions, two-dimensional responsive materials and structures that can shape morph into different three-dimensional configurations are valuable for creating reversible high DoF shape morphing.
View Article and Find Full Text PDFSci Rep
January 2025
School of Computer Science and Engineering, Southeast University, Nanjing, China.
The rapid urbanization has led to the loss of natural spaces and a subsequent disconnection between humans and nature, negatively affecting residents' well-being and environmental awareness. There is a a growing interest in leveraging technology to address this gap in Human-Computer Interaction. This article introduces GoChirp, an AI-powered wearable device for enhancing nature relatedness within urban landscapes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!