Modulation of stiffness provides a great deal of advantage in the way humans interact with the environment, and is very important in successfully performing activities of daily living. In the context of human-machine interactions, stiffness control could provide a safer interaction, especially when dealing with unpredictable environment. In this paper we propose a user-modulated stiffness and position control for the wrist flexion/extension degree of freedom while physically coupled to a haptic device. A virtual position tracking experiment in a varying external force field is designed in order to test the performance of the control strategy with and without co-contraction techniques. Tracking accuracy and smoothness of motion indicate better performance when subjects use co-contraction techniques, and the difference in the two types of experiment is also statistically significant.

Download full-text PDF

Source
http://dx.doi.org/10.1109/ICORR.2017.8009335DOI Listing

Publication Analysis

Top Keywords

haptic device
8
co-contraction techniques
8
position stiffness
4
stiffness modulation
4
modulation wrist
4
wrist haptic
4
device myoelectric
4
myoelectric interface
4
interface modulation
4
modulation stiffness
4

Similar Publications

A compliant metastructure design with reconfigurability up to six degrees of freedom.

Nat Commun

January 2025

Morphing Matter Lab, Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA, USA.

Compliant mechanisms with reconfigurable degrees of freedom are gaining attention in the development of kinesthetic haptic devices, robotic systems, and mechanical metamaterials. However, available devices exhibit limited programmability and form-customizability, restricting their versatility. To address this gap, we propose a metastructure concept featuring reconfigurable motional freedom and tunable stiffness, adaptable to various form factors and applications.

View Article and Find Full Text PDF

A recurring challenge in extracting energy from ambient motion is that devices must maintain high harvesting efficiency and a positive user experience when the interface is undergoing dynamic compression. We show that small amphiphiles can be used to tune friction, haptics, and triboelectric properties by assembling into specific conformations on the surfaces of materials. Molecules that form multiple slip planes under pressure, especially through π-π stacking, produce 80 to 90% lower friction than those that form disordered mesostructures.

View Article and Find Full Text PDF

This paper explores the integration of haptic gloves and virtual reality (VR) environments to enhance industrial training and operational efficiency within the framework of Industry 4.0 and Industry 5.0.

View Article and Find Full Text PDF

The high degree of freedom (DoF) shape morphing widely exists in biology for mimicry, camouflage, and locomotion. Currently, a lot of bionic soft/flexible actuators and robots with shape-morphing functions have been developed to realize conformity, grasp, and movement. Among these solutions, two-dimensional responsive materials and structures that can shape morph into different three-dimensional configurations are valuable for creating reversible high DoF shape morphing.

View Article and Find Full Text PDF

The rapid urbanization has led to the loss of natural spaces and a subsequent disconnection between humans and nature, negatively affecting residents' well-being and environmental awareness. There is a a growing interest in leveraging technology to address this gap in Human-Computer Interaction. This article introduces GoChirp, an AI-powered wearable device for enhancing nature relatedness within urban landscapes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!