Motor dexterity assessment is regularly performed in rehabilitation wards to establish patient status and automatization for such routinary task is sought. A system for automatizing the assessment of motor dexterity based on the Fugl-Meyer scale and with loose restrictions on sensing technologies is presented. The system consists of two main elements: 1) A data representation that abstracts the low level information obtained from a variety of sensors, into a highly separable low dimensionality encoding employing t-distributed Stochastic Neighbourhood Embedding, and, 2) central to this communication, a multi-label classifier that boosts classification rates by exploiting the fact that the classes corresponding to the individual exercises are naturally organized as a network. Depending on the targeted therapeutic movement class labels i.e. exercises scores, are highly correlated-patients who perform well in one, tends to perform well in related exercises-; and critically no node can be used as proxy of others - an exercise does not encode the information of other exercises. Over data from a cohort of 20 patients, the novel classifier outperforms classical Naive Bayes, random forest and variants of support vector machines (ANOVA: p < 0.001). The novel multi-label classification strategy fulfills an automatic system for motor dexterity assessment, with implications for lessening therapist's workloads, reducing healthcare costs and providing support for home-based virtual rehabilitation and telerehabilitation alternatives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/ICORR.2017.8009301 | DOI Listing |
Clin Nutr ESPEN
January 2025
Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, 20520 Turku, Finland; Nutrition and Food Research Center, University of Turku, 20014 Turku, Finland.
Background And Aims: Maternal diet and health may influence a child's later neurodevelopment. We investigated the effect of maternal diet, adiposity, gestational diabetes mellitus (GDM), and depressive/anxiety symptoms during pregnancy on the child's motor outcome at 5-6 years.
Methods: The motor performance of 159 children of women with overweight or obesity (pre-pregnancy body mass index 25-29.
Unlabelled: Electric fields used in clinical trials with transcranial direct current stimulation (tDCS) are small, with magnitudes that have yet to demonstrate measurable effects in preclinical animal models. We hypothesized that weak stimulation will nevertheless produce sizable effects, provided that it is applied concurrently with behavioral training, and repeated over multiple sessions. We tested this here in a rodent model of dexterous motor-skill learning.
View Article and Find Full Text PDFJ Diet Suppl
January 2025
LINP2, UFR STAPS, University of Paris Nanterre, Nanterre, France.
Our previous study revealed the benefits of chronic melatonin intake on dynamic postural imbalance and poor walking capacity induced by multiple sclerosis but its impact on muscle weakness and poor manual dexterity related to this disease has not yet been explored. The objective of the current study was to investigate the effectiveness of 12-week melatonin supplementation on motor skills (i.e.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Humanoid Robots, School of Engineering Science, University of Science and Technology of China, Hefei, 230026, China.
A human hand has 23-degree-of-freedom (DOF) dexterity for managing activities of daily living (ADLs). Current prosthetic hands, primarily driven by motors or pneumatic actuators, fall short in replicating human-level functions, primarily due to limited DOF. Here, we develop a lightweight prosthetic hand that possesses biomimetic 19-DOF dexterity by integrating 38 shape-memory alloy (SMA) actuators to precisely control five fingers and the wrist.
View Article and Find Full Text PDFPhotochem Photobiol
January 2025
Laboratory of Lasers, Faculdade São Leopoldo Mandic, Campinas, Brazil.
This study investigated the effects of transcranial photobiomodulation (t-PBM) on para-athletes' manual dexterity and intralimbal coordination. Six para-athletes from a Boccia Team participated. t-PBM was administered using a LED helmet with 204 LEDs (660 and 850 nm) emitting 10 mW each, delivering 9 J/cm per LED during 15-min sessions three times a week.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!