DNA Profiling of Strains in Fermented Foods by Repetitive Element Polymerase Chain Reaction.

J Microbiol Biotechnol

Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea.

Published: October 2017

To identify and discriminate the bacterial species at the subspecific level, rep-PCR is a reliable genomic fingerprinting tool. Fourteen strains of bacteria were isolated from different food sources, identified as using 16S rRNA gene sequencing, and amplified using rep-primers (REP, ERIC, and (GTG)). Fingerprinting patterns generated bands in the range of 300-6,000 bp with REP, 150-6,000 bp with ERIC, and 200-1,700 bp with (GTG) primers. In UPGMA dendrogram analysis, 14 strains were clustered into three clades (I, II, and III) with all the primers, thus differentiating them at the molecular level. The present study revealed the differentiation of strains using rep-PCR.

Download full-text PDF

Source
http://dx.doi.org/10.4014/jmb.1705.05022DOI Listing

Publication Analysis

Top Keywords

dna profiling
4
strains
4
profiling strains
4
strains fermented
4
fermented foods
4
foods repetitive
4
repetitive element
4
element polymerase
4
polymerase chain
4
chain reaction
4

Similar Publications

ScarTrace is a CRISPR/Cas9-based genetic lineage tracing method that allows for uniquely barcoding the DNA of single cells at a target GFP sequence during developing zebrafish embryos. Single cells from barcoded adult zebrafish can be isolated from various tissues (e.g.

View Article and Find Full Text PDF

Image-Based Phenotypic Profiling Enables Rapid and Accurate Assessment of EGFR-Activating Mutations in Tissues from Lung Cancer Patients.

J Am Chem Soc

January 2025

Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610065, China.

Determining mutations in the kinase domain of the epidermal growth factor receptor (EGFR) is critical for the effectiveness of EGFR tyrosine kinase inhibitors (TKIs) in lung cancer. Yet, DNA-based sequencing analysis of tumor samples is time-consuming and only provides gene mutation information on EGFR, making it challenging to design effective EGFR-TKI therapeutic strategies. Here, we present a new image-based method involving the rational design of a quenched probe based on EGFR-TKI to identify mutant proteins, which permits specific and "no-wash" real-time imaging of EGFR in living cells only upon covalent targeting of the EGFR kinase.

View Article and Find Full Text PDF

Identification of common diagnostic genes and molecular pathways in endometriosis and systemic lupus erythematosus by machine learning approach and in vitro experiment.

Int J Med Sci

January 2025

Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China.

Growing research suggests that endometriosis and systemic lupus erythematosus (SLE) are both chronic inflammatory diseases and closely related, but no studies have explored their common molecular characteristics and underlying mechanisms. Based on GEO datasets, differentially expressed genes in the endometriosis cohort and the SLE cohort were screened using Limma and weighted gene co-expression network analysis (WGCNA), and prediction signatures were constructed using LASSO logistic regression analysis, respectively. Four co-diagnostic genes (PMP22, QSOX1, REV3L, SP110) were identified for endometriosis and SLE.

View Article and Find Full Text PDF

In the realm of hospital-acquired and chronic infections, stands out, demonstrating significant associations with increased morbidity, mortality, and antibiotic resistance. Antibiotic-resistant strains are believed to contribute to thousands of deaths each year. Chronic and latent infections are associated with the bacterial toxin-antitoxin (TA) system, although the mechanisms involved are poorly understood.

View Article and Find Full Text PDF

LKB1 inactivation promotes epigenetic remodeling-induced lineage plasticity and antiandrogen resistance in prostate cancer.

Cell Res

January 2025

Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.

Epigenetic regulation profoundly influences the fate of cancer cells and their capacity to switch between lineages by modulating essential gene expression, thereby shaping tumor heterogeneity and therapy response. In castration-resistant prostate cancer (CRPC), the intricacies behind androgen receptor (AR)-independent lineage plasticity remain unclear, leading to a scarcity of effective clinical treatments. Utilizing single-cell RNA sequencing on both human and mouse prostate cancer samples, combined with whole-genome bisulfite sequencing and multiple genetically engineered mouse models, we investigated the molecular mechanism of AR-independent lineage plasticity and uncovered a potential therapeutic strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!