Molecular spintronics is currently attracting a lot of attention due to its great advantages over traditional electronics. A variety of self-assembled molecule-based devices are under development, but studies regarding the reliability of the growth process remain rare. Here, we present a method to control the length of molecular spintronic chains and to make their terminations chemically inert, thereby suppressing uncontrolled coupling to surface defects. The temperature evolution of chain formation was followed by X-ray photoelectron spectroscopy to determine optimal growth conditions. The final structures of the chains were then studied, using scanning tunneling microscopy, as a function of oligomerization conditions. We find that short chains are readily synthesized with high yields and that long chains, even exceeding 70mers, can be realized under optimized growth parameters, albeit with reduced yields.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.7b04194DOI Listing

Publication Analysis

Top Keywords

chains
5
on-surface oligomerization
4
oligomerization self-terminating
4
self-terminating molecular
4
molecular chains
4
chains design
4
design spintronic
4
spintronic devices
4
devices molecular
4
molecular spintronics
4

Similar Publications

Background: This study aimed to investigate miRNAs and upstream regulatory transcription factors involved in schizophrenia (SZ) pathogenesis.

Methods: Differential expression of miRNAs and genes in SZ patients was investigated utilizing the gene expression omnibus dataset, gene ontology annotations, and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. Real-time quantitative polymerase chain reaction experiments were conducted to validate the predictive screening of regulatory genes in peripheral blood samples from 20 SZ patients and 20 healthy controls.

View Article and Find Full Text PDF

Background/objectives: Millions of individuals worldwide continue to experience symptoms following SARS-CoV-2 infection. This study aimed to assess the prevalence and phenotype of multi-system symptoms attributed to Long COVID-including fatigue, pain, cognitive-emotional disturbances, headache, cardiopulmonary issues, and alterations in taste and smell-that have persisted for at least two years after acute infection, which we define as "persistent Long COVID". Additionally, the study aimed to identify clinical features and blood biomarkers associated with persistent Long COVID symptoms.

View Article and Find Full Text PDF

The Junín virus (JUNV) is one of the New World arenaviruses that cause severe hemorrhagic fever. Human transferrin receptor 1 (hTfR1) has been identified as the main receptor for JUNV for virus entry into host cells. To date, no treatment has been approved for JUNV.

View Article and Find Full Text PDF

Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease caused by the JC polyomavirus (JCPyV). Based on the clinical criteria, PML is diagnosed via polymerase chain reaction (PCR) detection of JCPyV DNA in cerebrospinal fluid (CSF) in combination with neurological and imaging findings. Although the utility of CSF JCPyV testing using ultrasensitive PCR assays has been suggested, its potential requires further evaluation.

View Article and Find Full Text PDF

This study evaluated influenza A virus (IAV) detection and genetic diversity over time, specifically at the human-swine interface in breeding and nursery farms. Active surveillance was performed monthly in five swine farms in the Midwest United States targeting the employees, the prewean piglets at sow farms, and the same cohort of piglets in downstream nurseries. In addition, information was collected at enrollment for each employee and farm to assess production management practices, IAV vaccination status, diagnostic procedures, and biosecurity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!