PRmePRed: A protein arginine methylation prediction tool.

PLoS One

Translational Bioinformatics Group, ICGEB, New Delhi, India.

Published: October 2017

Protein methylation is an important Post-Translational Modification (PTMs) of proteins. Arginine methylation carries out and regulates several important biological functions, including gene regulation and signal transduction. Experimental identification of arginine methylation site is a daunting task as it is costly as well as time and labour intensive. Hence reliable prediction tools play an important task in rapid screening and identification of possible methylation sites in proteomes. Our preliminary assessment using the available prediction methods on collected data yielded unimpressive results. This motivated us to perform a comprehensive data analysis and appraisal of features relevant in the context of biological significance, that led to the development of a prediction tool PRmePRed with better performance. The PRmePRed perform reasonably well with an accuracy of 84.10%, 82.38% sensitivity, 83.77% specificity, and Matthew's correlation coefficient of 66.20% in 10-fold cross-validation. PRmePRed is freely available at http://bioinfo.icgeb.res.in/PRmePRed/.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5557562PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0183318PLOS

Publication Analysis

Top Keywords

arginine methylation
12
prediction tool
8
methylation
5
prmepred
4
prmepred protein
4
protein arginine
4
prediction
4
methylation prediction
4
tool protein
4
protein methylation
4

Similar Publications

Objectives: To predict and characterize the three-dimensional (3D) structure of protein arginine methyltransferase 2 (PRMT2) using homology modeling, besides, the identification of potent inhibitors for enhanced comprehension of the biological function of this protein arginine methyltransferase (PRMT) family protein in carcinogenesis.

Materials And Methods: An method was employed to predict and characterize the three-dimensional structure. The bulk of PRMTs in the PDB shares just a structurally conserved catalytic core domain.

View Article and Find Full Text PDF

Evaluation of the Effects of Mulberry Leaf Extracts L. on Cardiovascular, Renal, and Platelet Function in Experimental Arterial Hypertension.

Nutrients

December 2024

Departamento Fisiología, Facultad Medicina, Instituto Murciano de Investigación Biosanitaria, Universidad de Murcia, 30120 Murcia, Spain.

Introduction: Numerous epidemiological studies have demonstrated that consuming foods rich in polyphenols and flavonoids can have beneficial effects on various diseases, including arterial hypertension (HTN). Recent research from our laboratory has shown that certain flavonoids exhibit antihypertensive properties in several animal models of HTN. Our objective was to evaluate the effect of L.

View Article and Find Full Text PDF

Background: Adenoid cystic carcinoma (ACC) is a rare glandular malignancy, commonly originating in salivary glands of the head and neck. Given its protracted growth, ACC is usually diagnosed in advanced stage. Treatment of ACC is limited to surgery and/or adjuvant radiotherapy, which often fails to prevent disease recurrence, and no FDA-approved targeted therapies are currently available.

View Article and Find Full Text PDF

Substrate adaptors are flexible tethering modules that enhance substrate methylation by the arginine methyltransferase PRMT5.

J Biol Chem

January 2025

Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA. Electronic address:

Protein arginine methyltransferase (PRMT) 5 is an essential arginine methyltransferase responsible for the majority of cellular symmetric dimethyl-arginine (SDMA) marks. PRMT5 uses substrate adaptors such as pICln, RIOK1, and COPR5, to recruit and methylate a wide range of substrates. Although the substrate adaptors play important roles in substrate recognition, how they direct PRMT5 activity towards specific substrates remains incompletely understood.

View Article and Find Full Text PDF

Background: Heart failure with preserved ejection fraction (HFpEF) is linked to prolonged endoplasmic reticulum (ER) stress. P21-activated kinase 2 (Pak2) facilitates a protective ER stress response. This study explores the mechanism and role of Pak2 in HFpEF pathology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!