HPV 16 E6 upregulates hTERT expression in lung cancer cells. However, the underlying molecular mechanism is unclear. In this paper, E6, LKB1, SP1, and hTERT mRNA expression levels were detected in brushing cells of patients with lung cancer (n = 106) and with benign lung disease (n = 68) by qRT-PCR. The mRNA expression levels of E6, SP1, and hTERT were significantly increased in the malignant group compared with the benign group (P < 0.01). Conversely, the mRNA expression level of LKB1 was significantly decreased in the malignant group (P < 0.01). Furthermore, the correlation between E6, Sp1, hTERT, and LKB1 was performed, our results indicated that E6, Sp1, and hTERT with positive, but LKB1 with negative correlation (P < 0.01). To investigate the potential relationship between these genes, using double directional genetic manipulation, we showed that overexpression of E6 in H1299 cells down-regulated LKB1 mRNA and protein expression but up-regulated SP1 and hTERT as well as the transcriptional activity of Sp1. In contrast, knockdown of E6 in A549 cells by short-interference RNAs (siRNAs) up-regulated LKB1 expression, but down-regulated SP1 and hTERT expression as well as Sp1 activity. LKB1 loss upregulated both SP1 and hTERT at the protein and mRNA level as well as SP1 activity. To verify that the role of E6 on hTERT was mediated by SP1, siRNA knockdown of SP1 was performed on both H1299 and A549 cell lines. Inhibition of SP1 downregulated hTERT expression. Our results indicate that HPV16 E6 indirectly upregulated the expression of hTERT by inhibition of LBK1 expression and upregulation of Sp1 expression, thus suggesting a HPV-LKB1-SP1-hTERT axis for the tumorigenesis of lung cancer. Our study also provides new evidence to support the critical role of SP1 and LKB1 in the pathogenesis of HPV-related lung cancer, and suggests novel therapeutic targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5558957 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0182775 | PLOS |
Int J Mol Sci
September 2024
Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk 630090, Russia.
Targeting DNA repair pathways is an important strategy in anticancer therapy. However, the unrevealed interactions between different DNA repair systems may interfere with the desired therapeutic effect. Among DNA repair systems, BER and NHEJ protect genome integrity through the entire cell cycle.
View Article and Find Full Text PDFCarcinogenesis
August 2024
Division of Surgery, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, China.
Telomerase reactivation is implicated in approximately 85% of human cancers, yet its underlying mechanism remains elusive. In this study, we elucidate that the cullin-RING ubiquitin ligase 4 (CRL4) complex drives the reactivation of human telomerase reverse transcriptase (hTERT) in colorectal cancer (CRC) by degrading the tumor suppressor, menin 1 (MEN1). Our data show that, in noncancerous intestinal epithelial cells, the transcription factor specificity protein 1 (Sp1) recruits both the histone acetyltransferase p300 and MEN1 to suppress hTERT expression, thus maintaining telomere shortness post-cell division.
View Article and Find Full Text PDFJ Virol
July 2022
IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy.
Several studies reported the presence of a recently discovered polyomavirus (PyV), Lyon IARC PyV (LIPyV), in human and domestic animal specimens. LIPyV has some structural similarities to well-established animal and human oncogenic PyVs, such as raccoon PyV and Merkel cell PyV (MCPyV), respectively. In this study, we demonstrate that LIPyV early proteins immortalize human foreskin keratinocytes.
View Article and Find Full Text PDFFront Pharmacol
October 2021
Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
To elucidate the oncogenic role of human telomerase reverse transcriptase (hTERT) in esophageal squamous cancer and unravel the therapeutic role and molecular mechanism of dihydroartemisinin (DHA) by targeting hTERT. The expression of hTERT in esophageal squamous cancer and the patients prognosis were analyzed by bioinformatic analysis from TCGA database, and further validated with esophageal squamous cancer tissues in our cohort. The Cell Counting Kit-8 (CCK8) and colony formation assay were used to evaluate the proliferation of esophageal squamous cancer cell lines (Eca109, KYSE150, and TE1) after hTERT overexpression or treated with indicated concentrations of DHA.
View Article and Find Full Text PDFJ Mol Histol
December 2021
Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
Abnormal expression of human telomerase reverse transcriptase (hTERT) has been widely identified in tumors, but the relevant mechanism is not well known. This study aims to investigate the role and mechanism of hTERT in gastric cancer metastasis. Gastric cancer and adjacent non-tumor tissues were collected and the expression levels of hTERT and Gli1 were detected by immunohistochemistry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!