Synthesis and Evaluation of a Sodium Alginate-4-Aminosalicylic Acid Based Microporous Hydrogel for Potential Viscosupplementation for Joint Injuries and Arthritis-Induced Conditions.

Mar Drugs

Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutics Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.

Published: August 2017

A microporous hydrogel was developed using sodium alginate (alg) and 4-aminosalicylic acid (4-ASA). The synthesized hydrogel was characterized using various analytical techniques such as Fourier transform infrared spectroscopy (FTIR), Carbon-13 nuclear magnetic resonance (C-NMR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). Additonal carboxyl and hydroxyl functional groups of 4-ASA provided significant lubrication and stress-triggered sol-gel transition to the conjugated hydrogel. In addition, cytotoxicity analysis was undertaken on the conjugated hydrogel using human dermal fibroblast-adult (HDFa) cells, displaying non-toxic characteristics. Drug release profiles displaying 49.6% in the first 8 h and 97.5% within 72 h, similar to the native polymer (42.8% in first 8 h and 90.1% within 72 h). Under applied external stimuli, the modified hydrogel displayed significant gelling properties and structure deformation/recovery behaviour, confirmed using rheological evaluation (viscosity and thixotropic area of 8095.3 mPas and 26.23%, respectively). The modified hydrogel, thus, offers great possibility for designing smart synovial fluids as a biomimetic aqueous lubricant for joint-related injuries and arthritis-induced conditions. In addtion, the combination of thixotropy, non-toxicity, and drug release capabilities enables potential viscosupplementation for clinical application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5577611PMC
http://dx.doi.org/10.3390/md15080257DOI Listing

Publication Analysis

Top Keywords

microporous hydrogel
8
potential viscosupplementation
8
injuries arthritis-induced
8
arthritis-induced conditions
8
conjugated hydrogel
8
drug release
8
modified hydrogel
8
hydrogel
7
synthesis evaluation
4
evaluation sodium
4

Similar Publications

Engineering Tough and Elastic Polyvinyl Alcohol-Based Hydrogel with Antimicrobial Properties.

Adv Nanobiomed Res

September 2024

Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States.

Hydrogels have been extensively used for tissue engineering applications due to their versatility in structure and physical properties, which can mimic native tissues. Although significant progress has been made towards designing hydrogels for soft tissue repair, engineering hydrogels that resemble load-bearing tissues is still considered a great challenge due to their specific mechano-physical demands. Here, we report microporous, tough, yet highly compressible poly(vinyl alcohol) (PVA)-based hydrogels for potential applications in repairing or replacing different load-bearing tissues.

View Article and Find Full Text PDF

3D Biofabrication of Microporous Hydrogels for Tissue Engineering.

Adv Healthc Mater

December 2024

Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China.

Microporous hydrogels have been utilized in an unprecedented manner in the last few decades, combining materials science, biology, and medicine. Their microporous structure makes them suitable for wide applications, especially as cell carriers in tissue engineering and regenerative medicine. Microporous hydrogel scaffolds provide spatial and platform support for cell growth and proliferation, which can promote cell growth, migration, and differentiation, influencing tissue repair and regeneration.

View Article and Find Full Text PDF

Bioinspired hierarchical porous tough adhesive to promote sealing of high-pressure bleeding.

Bioact Mater

March 2025

Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China.

Article Synopsis
  • The challenge of sealing uncontrolled high-pressure hemorrhage in emergencies outside surgical settings contributes to high trauma mortality rates, as current hemostatic bioadhesives are ineffective for major arteries and heart wounds.
  • A new tissue-conformable tough matrix is developed using a phase separation process that creates nanoporous aggregates within a double-network matrix, allowing for better energy dissipation and adhesion to soft tissues.
  • This new matrix shows increased durability and sealing capabilities, effectively managing severe bleeding in animal models and outperforming existing bioadhesives, offering a promising solution for treating hemorrhagic wounds.
View Article and Find Full Text PDF

From micropores to mechanical strength: Fabrication and characterization of edible corn starch-sodium alginate double network hydrogels with Ca2+ cross-linking.

Food Chem

November 2024

College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, China. Electronic address:

This study explores the fabrication and characterization of corn starch‑sodium alginate double network hydrogels using two distinct calcium ion cross-linking methods: the gluconolactone immersed method (GIM) and the calcium chloride immersed method (CCIM). We investigated the ionic cross-linking mechanism of these hydrogels and compared their microstructure and mechanical properties. Our results highlight significant differences between GIM and CCIM hydrogels, with the CCIM method producing a more uniform and compact network.

View Article and Find Full Text PDF

Unripe Plantain Peel Biohydrogel for Methylene Blue Removal from Aqueous Solution.

Polymers (Basel)

November 2024

Research Group in Science with Technological Applications (GICAT), Department of Chemistry, Faculty of Natural and Exact Science, Universidad del Valle, Cali 25360, Colombia.

Dye contamination is a serious environmental issue, particularly affecting water bodies, driving efforts to synthesize adsorbent materials with high dye-removal capacities. In this context, eco-friendly and cost-effective materials derived from bioresidues are being explored to recycle and valorize waste. This study investigates the synthesis, characterization, and application of a biohydrogel made from unripe plantain peel (PP), modified with carboxymethyl groups and crosslinked using varying concentrations of citric acid (CA), an eco-friendly and economical organic acid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!