A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Three-Dimensional Highly Stretchable Conductors from Elastic Fiber Mat with Conductive Polymer Coating. | LitMetric

Three-Dimensional Highly Stretchable Conductors from Elastic Fiber Mat with Conductive Polymer Coating.

ACS Appl Mater Interfaces

School of Materials Science and Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.

Published: September 2017

The manufacture of stretchable conductors with well-reserved electrical performance under large-degree deformations via scalable processes remains of great importance. In this work, a highly stretchable 3D conductive framework consisting of a polyurethane fiber mat (PUF) and poly(3,4-ethylenedioxythiophene) (PEDOT) is reported through facile approaches, electrospinning, and in situ interfacial polymerization, which was then backfilled with poly(dimethylsiloxane) to obtain 3D conductors. The excellent stretchability of the 3D conductive network imparted the as-prepared electrode a superior mechanical durability. Moreover, the applied strains can be effectively accommodated by the arrangement and orientation of the fibers resulting in a relatively stable electrical performance with only a 20% increased resistance at 100% stretching. Meanwhile, the resistance of the conductor could remain constant during 2000 bending cycles and showed a slight increase during 100 cycles of 50% stretching. The potential in the applications of large-area stretchable electrodes was demonstrated by the construction of LED arrays with the PUF-based conductors as electrical connections.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b08453DOI Listing

Publication Analysis

Top Keywords

highly stretchable
8
stretchable conductors
8
fiber mat
8
electrical performance
8
three-dimensional highly
4
stretchable
4
conductors
4
conductors elastic
4
elastic fiber
4
mat conductive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!