Formalin-fixed paraffin-embedded (FFPE) tissue blocks are widely used to identify clinically actionable molecular alterations or perform retrospective molecular studies. Our goal was to quantify degradation of DNA occurring during mid to long-term storage of samples in usual conditions. We selected 46 FFPE samples of surgically resected carcinomas of lung, colon, and urothelial tract, of which DNA had been previously extracted. We performed a second DNA extraction on the same blocks under identical conditions after a median period of storage of 5.5 years. Quantitation of DNA by fluorimetry showed a 53% decrease in DNA quantity after storage. Quantitative PCR (qPCR) targeting KRAS exon 2 showed delayed amplification of DNA extracted after storage in all samples but one. The qPCR/fluorimetry quantification ratio decreased from 56 to 15% after storage (p < 0.001). Overall, remaining proportion of DNA analyzable by qPCR represented only 11% of the amount obtained at first extraction. Maximal length of amplifiable DNA fragments assessed with a multiplex PCR was reduced in DNA extracted from stored tissue, indicating that DNA fragmentation had increased in the paraffin blocks during storage. Next-generation sequencing was performed on 12 samples and showed a mean 3.3-fold decrease in library yield and a mean 4.5-fold increase in the number of single-nucleotide variants detected after storage. In conclusion, we observed significant degradation of DNA extracted from the same FFPE block after 4 to 6 years of storage. Better preservation strategies should be considered for storage of FFPE biopsy specimens.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00428-017-2213-0DOI Listing

Publication Analysis

Top Keywords

formalin-fixed paraffin-embedded
8
tissue blocks
8
storage samples
8
dna extracted
8
dna
7
storage
6
dna degrades
4
degrades storage
4
storage formalin-fixed
4
paraffin-embedded tissue
4

Similar Publications

Claudin 18.2: An attractive marker in pancreatic ductal adenocarcinoma.

Oncol Lett

March 2025

Department of Pathology, National Institute of Gastroenterology, IRCCS 'S. de Bellis' Research Hospital, Castellana Grotte, I-70013 Bari, Italy.

Pancreatic ductal adenocarcinoma (PDA) is a highly aggressive tumor with limited treatment options. Zolbetuximab, a monoclonal antibody against the tight junction protein Claudin 18.2 has recently been developed.

View Article and Find Full Text PDF

The role of cancer stem cells (CSC) in oral cancer is widely accepted. Yet, the existence of CSC in dysplastic tissue and the molecular pathways of progression from dysplasia to malignancy remain to be explored. Our retrospective study aimed to analyze the presence of CSC in oral epithelial dysplasia and oral squamous cell carcinoma (OSCC) concerning two epithelial-mesenchymal transition markers: Snail and E-cadherin.

View Article and Find Full Text PDF

Outcomes in stage IIA versus stage IIB/III in the PALLAS trial [ABCSG-42/AFT-05/PrE0109/BIG-14-13]).

Breast Cancer Res

January 2025

Austrian Breast & Colorectal Cancer Study Group (ABCSG), Vienna, Austria.

Background: The PALLAS trial investigated the addition of palbociclib to standard adjuvant endocrine therapy to reduce breast cancer recurrence. This pre-specified analysis was conducted to determine whether adjuvant palbociclib benefited patients diagnosed with lower risk stage IIA disease compared to those with higher stage disease.

Methods: PALLAS was an international, multicenter, randomized, open-label, phase III trial, representing a public-private partnership between Pfizer, the Austrian Breast Cancer Study Group, and the U.

View Article and Find Full Text PDF

Background: Peripheral nerve sheath tumors (PNSTs) encompass entities with different cellular differentiation and degrees of malignancy. Spatial heterogeneity complicates diagnosis and grading of PNSTs in some cases. In malignant PNST (MPNST) for example, single cell sequencing data has shown dissimilar differentiation states of tumor cells.

View Article and Find Full Text PDF

Spatial transcriptomics (ST) offers enormous potential to decipher the biological and pathological heterogeneity in precious archival cancer tissues. Traditionally, these tissues have rarely been used and only examined at a low throughput, most commonly by histopathological staining. ST adds thousands of times as many molecular features to histopathological images, but critical technical issues and limitations require more assessment of how ST performs on fixed archival tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!