In this work, we show that it is possible to overcome the limitations of solid-state MRI for rigid tissues due to large line broadening and short dephasing times by combining Magic Angle Spinning (MAS) with rotating pulsed field gradients. This allows recording ex vivo P 3D and 2D slice-selected images of rigid tissues and related biomaterials at very high magnetic field, with greatly improved signal to noise ratio and spatial resolution when compared to static conditions. Cross-polarization is employed to enhance contrast and to further depict spatially localized chemical variations in reduced experimental time. In these materials, very high magnetic field and moderate MAS spinning rate directly provide high spectral resolution and enable the use of frequency selective excitation schemes for chemically selective imaging. These new possibilities are exemplified with experiments probing selectively the 3D spatial distribution of apatitic hydroxyl protons inside a mouse tooth with attached jaw bone with a nominal isotropic resolution nearing 100 µm.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5557955 | PMC |
http://dx.doi.org/10.1038/s41598-017-08458-0 | DOI Listing |
J Biomed Phys Eng
December 2024
Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
Background: T thermometry is considered a straight method for the safety monitoring of patients with deep brain stimulation (DBS) electrodes against radiofrequency-induced heating during Magnetic Resonance Imaging (MRI), requiring different sequences and methods.
Objective: This study aimed to compare two T thermometry methods and two low specific absorption rate (SAR) imaging sequences in terms of the output image quality.
Material And Methods: In this experimental study, a gel phantom was prepared, resembling the brain tissue properties with a copper wire inside.
Int J Magn Part Imaging
December 2022
Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA, USA.
Magnetic particle imaging noninvasively maps the distribution of superparamagnetic iron oxide nanoparticles with high sensitivity. Since the particles are confined to the blood pool within the brain, it may be well-suited for cerebral blood volume (CBV)-based functional neuroimaging with MPI (fMPI). Here, we present a magnetic particle imaging system designed to detect the CBV modulation at the hemodynamic timescale (~5 sec) in rodents.
View Article and Find Full Text PDFIEEE Access
November 2024
University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
The achievable spatial resolution of C metabolic images acquired with hyperpolarized C-pyruvate is worse than H images typically by an order of magnitude due to the rapidly decaying hyperpolarized signals and the low gyromagnetic ratio of C. This study is to develop and characterize a volumetric patch-based super-resolution reconstruction algorithm that enhances spatial resolution C cardiac MRI by utilizing structural information from H MRI. The reconstruction procedure comprises anatomical segmentation from high-resolution H MRI, calculation of a patch-based weight matrix, and iterative reconstruction of high-resolution multi-slice C MRI.
View Article and Find Full Text PDFJCEM Case Rep
January 2025
Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-8641, Ishikawa, Japan.
Pheochromocytoma and paraganglioma (PPGL) are rare chromaffin-cell tumors producing adrenaline and/or noradrenaline, or solely dopamine. A 52-year-old man presenting with hypertension (141/79 mm Hg) and weight loss (10 kg in 6 months) was admitted to our hospital. Computed tomography revealed a massive right adrenal mass (150 mm) with partial necrosis, accompanied by multiple liver nodules.
View Article and Find Full Text PDFInterspeech
September 2024
Pattern Recognition Lab. Friedrich-Alexander University, Erlangen, Germany.
Magnetic Resonance Imaging (MRI) allows analyzing speech production by capturing high-resolution images of the dynamic processes in the vocal tract. In clinical applications, combining MRI with synchronized speech recordings leads to improved patient outcomes, especially if a phonological-based approach is used for assessment. However, when audio signals are unavailable, the recognition accuracy of sounds is decreased when using only MRI data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!