The functional contribution of the lateral frontal cortex to behavior has been discussed with reference to several higher-order cognitive domains. In a separate line of research, recent studies have focused on the anatomical organization of this part of the brain. These different approaches are rarely combined. Here, we combine previous work using anatomical connectivity that identified a lateral subdivision of the human frontal pole and work that suggested a general role for rostrolateral prefrontal cortex in processing higher-order relations, irrespective of the type of information. We asked healthy human volunteers to judge the relationship between pairs of stimuli, a task previously suggested to engage the lateral frontal pole. Presenting both shape and face stimuli, we indeed observed overlapping activation of the lateral prefrontal cortex when subjects judged relations between pairs. Using resting state functional MRI, we confirmed that the activated region's whole-brain connectivity most strongly resembles that of the lateral frontal pole. Using diffusion MRI, we showed that the pattern of connections of this region with the main association fibers again is most similar to that of the lateral frontal pole, consistent with the observation that it is this anatomical region that is involved in relational processing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbr.2017.08.003 | DOI Listing |
PLoS One
January 2025
Department of Biomedical and Robotics Engineering, Incheon National University, Incheon, Korea.
Gait disturbance is one of the most common symptoms in patients with Parkinson's disease (PD) that is closely associated with poor clinical outcomes. Recently, video-based human pose estimation (HPE) technology has attracted attention as a cheaper and simpler method for performing gait analysis than marker-based 3D motion capture systems. However, it remains unclear whether video-based HPE is a feasible method for measuring temporospatial and kinematic gait parameters in patients with PD and how this function varies with camera position.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Department of Psychology, University of Lübeck, Lübeck, Germany.
Distraction is ubiquitous in human environments. Distracting input is often predictable, but we do not understand when or how humans can exploit this predictability. Here, we ask whether predictable distractors are able to reduce uncertainty in updating the internal predictive model.
View Article and Find Full Text PDFBrain Sci
December 2024
Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China.
Motor imagery includes visual imagery and kinesthetic imagery, which are two strategies that exist for mental rotation and are currently widely studied. However, different mental rotation tests can lead to different strategic performances. There are also many research results where two different strategies appear simultaneously under the same task.
View Article and Find Full Text PDFNeuropsychologia
January 2025
Neuroscience Area, SISSA, Trieste, Italy; Dipartimento di Medicina dei Sistemi, Università di Roma-Tor Vergata, Roma, Italy.
Although gesture observation tasks are believed to invariably activate the action-observation network (AON), we investigated whether the activation of different cognitive mechanisms when processing identical stimuli with different explicit instructions modulates AON activations. Accordingly, 24 healthy right-handed individuals observed gestures and they processed both the actor's moved hand (hand laterality judgment task, HT) and the meaning of the actor's gesture (meaning task, MT). The main brain-level result was that the HT (vs MT) differentially activated the left and right precuneus, the left inferior parietal lobe, the left and right superior parietal lobe, the middle frontal gyri bilaterally and the left precentral gyrus.
View Article and Find Full Text PDFFront Aging Neurosci
January 2025
Department of Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
Background: The perception of Subjective Visual Vertical (SVV) is crucial for postural orientation and significantly reflects an individual's postural control ability, relying on vestibular, visual, and somatic sensory inputs to assess the Earth's gravity line. The neural mechanisms and aging effects on SVV perception, however, remain unclear.
Objective: This study seeks to examine aging-related changes in SVV perception and uncover its neurological underpinnings through functional near-infrared spectroscopy (fNIRS).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!