Background: Gait modifications can reduce the knee adduction moment, a representation of knee loading. Reduced loading may help to slow progression of medial knee osteoarthritis. We aimed to investigate the response of patients with medial knee osteoarthritis to direct feedback on the knee adduction moment as a method for modifying the gait pattern, before and after training with specific gait modifications.

Methods: Forty patients with medial knee osteoarthritis underwent 3D gait analysis on an instrumented-treadmill, while receiving real-time feedback on the peak knee adduction moment. Patients were trained with three different modifications; toe-in, wider steps and medial thrust gait. The response to real-time feedback on the knee adduction moment was measured before and after training. To evaluate the short term retention effect, we measured the changes without feedback. We also evaluated the effects on the knee flexion moment and at the hip and ankle joints.

Findings: With direct feedback on the knee adduction moment, patients were initially unable to reduce the knee adduction moment. After training with specific modifications, peak knee adduction moment was reduced by 14% in response to direct feedback. Without feedback a 9% reduction in peak knee adduction moment was maintained. Hip moments were not increased with modified gait, but small increases in ankle adduction moment and knee flexion moment were observed.

Interpretation: Real-time biofeedback directly on the knee adduction moment is a promising option for encouraging gait modifications to reduce knee loading, however only when combined with specific instructions on how to modify the gait.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinbiomech.2017.07.004DOI Listing

Publication Analysis

Top Keywords

adduction moment
44
knee adduction
40
knee
18
peak knee
16
medial knee
16
knee osteoarthritis
16
direct feedback
16
moment
13
moment patients
12
patients medial
12

Similar Publications

: The ankle joint is among the most vulnerable areas for injuries during daily activities and sports. This study focuses on individuals with chronic ankle instability (CAI), comparing the biomechanical characteristics of the lower limb during side-step cutting under various conditions. The aim is to analyze the impact of kinesiology tape (KT) length on the biomechanical properties of the lower limb during side-step cutting, thereby providing theoretical support and practical guidance for protective measures against lower-limb sports injuries.

View Article and Find Full Text PDF

A Faster Walking Speed Is Important for Improving Biomechanical Function and Walking Performance.

J Appl Biomech

January 2025

Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom.

This study compares joint kinematics and kinetics of young stroke survivors who walk <0.79 m/s (slow) or >0.80 m/s (fast) with reference to a healthy able-bodied group and provides clinical recommendations for guiding the gait rehabilitation of stroke survivors.

View Article and Find Full Text PDF
Article Synopsis
  • Patients with transfemoral amputation often face issues related to socket fit and overuse injuries due to uneven joint stress, which can be improved by using bone-anchored prosthetics that connect directly to the bone.
  • This study investigates the relationship between the alignment of the femur and pelvis and how it impacts hip loading asymmetry during walking, both before and one year after receiving a bone-anchored limb implant.
  • The analysis included 19 participants from a larger group who underwent the surgery, comparing their skeletal alignment and hip motion data collected at two different time points to determine the effects of the implantation on their mobility and joint loading.
View Article and Find Full Text PDF

End-divergent architecture diversifies within-muscle mechanical action in human gluteus maximus in vivo.

J Biomech

January 2025

Faculty of Health and Sports Science, Doshisha University, Kyoto, Japan; Human Performance Laboratory, Waseda University, Saitama, Japan.

A muscle's mechanical action is affected by its architecture. However, less is known about the architecture of muscles with broad attachments: "end-divergent" muscles. Potential regional variation of fascicle orientation in end-divergent muscles suggests that their mechanical action varies by region.

View Article and Find Full Text PDF

Assessment of varus thrust using inertial measurement units.

Clin Biomech (Bristol)

December 2024

Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA. Electronic address:

Background: Varus thrust is common in those with knee osteoarthritis. Varus thrust is traditionally identified with visual analysis or motion capture, methods that are either dichotomous or limited to the laboratory setting. Inertial measurement unit data has been found to correlate with motion capture measures of varus thrust in those with severe knee osteoarthritis, allowing for a quantitative and accessible way of measuring varus thrust.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!