Background: The application of genomic selection to sheep breeding could lead to substantial increases in profitability of wool production due to the availability of accurate breeding values from single nucleotide polymorphism (SNP) data. Several key traits determine the value of wool and influence a sheep's susceptibility to fleece rot and fly strike. Our aim was to predict genomic estimated breeding values (GEBV) and to compare three methods of combining information across traits to map polymorphisms that affect these traits.

Methods: GEBV for 5726 Merino and Merino crossbred sheep were calculated using BayesR and genomic best linear unbiased prediction (GBLUP) with real and imputed 510,174 SNPs for 22 traits (at yearling and adult ages) including wool production and quality, and breech conformation traits that are associated with susceptibility to fly strike. Accuracies of these GEBV were assessed using fivefold cross-validation. We also devised and compared three approximate multi-trait analyses to map pleiotropic quantitative trait loci (QTL): a multi-trait genome-wide association study and two multi-trait methods that use the output from BayesR analyses. One BayesR method used local GEBV for each trait, while the other used the posterior probabilities that a SNP had an effect on each trait.

Results: BayesR and GBLUP resulted in similar average GEBV accuracies across traits (~0.22). BayesR accuracies were highest for wool yield and fibre diameter (>0.40) and lowest for skin quality and dag score (<0.10). Generally, accuracy was higher for traits with larger reference populations and higher heritability. In total, the three multi-trait analyses identified 206 putative QTL, of which 20 were common to the three analyses. The two BayesR multi-trait approaches mapped QTL in a more defined manner than the multi-trait GWAS. We identified genes with known effects on hair growth (i.e. FGF5, STAT3, KRT86, and ALX4) near SNPs with pleiotropic effects on wool traits.

Conclusions: The mean accuracy of genomic prediction across wool traits was around 0.22. The three multi-trait analyses identified 206 putative QTL across the ovine genome. Detailed phenotypic information helped to identify likely candidate genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5558709PMC
http://dx.doi.org/10.1186/s12711-017-0337-yDOI Listing

Publication Analysis

Top Keywords

wool production
8
breeding values
8
fly strike
8
traits
6
wool
5
gebv
5
bayesr
5
multiple-trait qtl
4
qtl mapping
4
genomic
4

Similar Publications

The clinical diagnosis of dermatophytosis and identification of dermatophytes face challenges due to reliance on culture-based methods. Rapid, cost-effective detection techniques for volatile organic compounds (VOCs) have been developed for other microorganisms, but their application to dermatophytes is limited. This study explores using VOCs as diagnostic markers for dermatophytes.

View Article and Find Full Text PDF

Investigation of Damping Properties of Natural Fiber-Reinforced Composites at Various Impact Energy Levels.

Polymers (Basel)

December 2024

Department of Automotive Engineering, Faculty of Technology, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey.

Natural fiber-reinforced composites are composite materials composed of natural fibers, such as plant fibers and synthetic biopolymers. These environmentally friendly composites are biodegradable, renewable, cheap, lightweight, and low-density, attracting attention as eco-friendly alternatives to synthetic fiber-reinforced composites. In this study, natural fiber-reinforced polymer foam core layered composites were produced for the automotive industry.

View Article and Find Full Text PDF

This paper concerns research into the use of 3D-printed gyroid structures as a modern thermal insulation material in construction. The study focuses on the analysis of open-cell gyroid structures and their effectiveness in insulating external building envelopes. Gyroid composite samples produced using DLP 3D-printing technology were tested to determine key parameters such as thermal conductivity (λ), thermal resistance (R) and heat transfer coefficient (U) according to ISO 9869-1:2014.

View Article and Find Full Text PDF

Background: Saryarka sheep belong to fat-tailed coarse-wool sheep breed. This breed is distinguished by increased meat productivity while being competitive in young lamb production. Live weight and body indices are relevant data for assessing sheep body constitution, which directly affects the breeding characteristics and meat productivity of animals.

View Article and Find Full Text PDF

The Spanish Merino is the most significant sheep breed globally due to its economic and cultural importance in human history. It has also had a substantial influence on the development of other Merino and Merino-derived breeds. Historical sources indicate that crossbreeding to produce finer, higher-quality wool was already taking place in the south of the Iberian Peninsula during the Roman era.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!