HIV-1 viremia has been shown to induce several phenotypic and functional abnormalities in natural killer (NK) cells. To assess immune defects associated with HIV viremia, we examined NK cell function, differentiation status, and phenotypic alterations based on expression of inhibitory and activating receptors on NK cells in HIV-1 subtype C chronically infected participants from Durban, South Africa. NK cell phenotypic profiles were characterized by assessing sialic acid-binding immunoglobulin-like lectin-7 (Siglec-7), NKG2A, and NKG2C markers on frozen peripheral blood mononuclear cells from viremic, antiretroviral therapy (ART)-naive HIV-1 chronically infected participants (n = 23), HIV-1 chronically infected participants who had been on combination antiretroviral therapy (cART) for at least 12 months (n = 23) compared with healthy donors (n = 23). NK cell differentiation was assessed by measurement of killer immunoglobulin receptor (KIR) and NKG2A expression; CD57 and CD107a measurements were carried out in HIV viremic and healthy donors. All phenotypic and functional assessments were analyzed by using multicolor flow cytometry. HIV-1-infected participants displayed greater frequencies of the CD56CD16 (CD56negative) NK cell subset compared with healthy donors (p < .0001). Downregulation of Siglec-7 and NKG2A and upregulation of NKG2C were more pronounced in the CD56negative NK cell subset of viremic participants. The CD56negative subset demonstrated a differentiated (KIRNKG2A) phenotype with reduced CD57 expression and lower degranulation capacity in HIV-1-infected participants compared with healthy donors. HIV-1 infection induces the expansion of the CD56negative NK cell subset marked by altered receptor expression profiles that are indicative of impaired function and may explain the overall NK cell dysfunction observed in chronic HIV-1 infection.

Download full-text PDF

Source
http://dx.doi.org/10.1089/AID.2017.0095DOI Listing

Publication Analysis

Top Keywords

natural killer
12
chronically infected
12
infected participants
12
healthy donors
12
siglec-7 nkg2a
8
killer cell
8
cell subset
8
phenotypic functional
8
antiretroviral therapy
8
hiv-1 chronically
8

Similar Publications

Risk factors for re-hospitalization within 90 days of discharge for severe influenza in children.

BMC Infect Dis

January 2025

Institute of Pediatric Research, Children's Hospital of Hebei Province, 133 Jianhua South Street, Shijiazhuang, 050031, Hebei Province, China.

Background: Influenza virus is a contagious respiratory pathogen that can cause severe acute infections with long-term adverse outcomes. For paediatric patients at high risk of severe influenza, the readmission and the associated risk factors remain unclear.

Methods: Children discharged with a diagnosis of severe or critical influenza from October 2021 to March 2022 were included.

View Article and Find Full Text PDF

The clinical potential of current chimeric antigen receptor-engineered T (CAR-T) cell therapy is hampered by its autologous nature that poses considerable challenges in manufacturing, costs and patient selection. This spurs demand for off-the-shelf therapies. Here we introduce an ex vivo feeder-free culture method to differentiate gene-engineered hematopoietic stem and progenitor (HSP) cells into allogeneic invariant natural killer T (NKT) cells and their CAR-armed derivatives (CAR-NKT cells).

View Article and Find Full Text PDF

The Innate Lymphoid Cells (ILCs) are a family of innate immune cells composed by the Natural Killer (NK) cells and the helper ILCs (hILCs) (ILC1, ILC2, ILC3), both developing from a common ILC precursor (ILCP) derived from hematopoietic stem cells (HSCs). A correct ILC reconstitution is crucial, particularly in patients receiving HSC transplantation (HSCT), the only therapeutic option for many adult and pediatric high-risk hematological malignancies. Indeed, mainly thanks to their cytotoxic activity, NK cells have a strong Graft-versus-Leukemia (GvL) effect.

View Article and Find Full Text PDF

In recent years, three-dimensional (3D) cultures of tumor cells has emerged as an important tool in cancer research. The significance of 3D cultures, such as tumor spheroids, lies in their ability to mimic the in vivo tumor microenvironment more precisely, offering a nuanced understanding of immune responses within the context of tumor progression. In fact, the infiltration of cytotoxic lymphocytes is key to determining patients' prognosis in several types of cancer and response to immunotherapy.

View Article and Find Full Text PDF

Hematopoietic stem cell transplantation (HSCT) is widely used to treat patients with life-threatening hematologic and immune system disorders. Current nontargeted chemo-/radiotherapy conditioning regimens cause tissue injury and induce an array of immediate and delayed adverse effects, limiting the application of this life-saving treatment. The growing demand to replace canonical conditioning regimens has led to the development of alternative approaches, such as antibody-drug conjugates, naked antibodies, and CAR T cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!