The electronic structure at the organic-inorganic semiconductor interface of π-conjugated copper phthalocyanine (CuPc) on a black phosphorus (BP) crystal surface is studied with photoemission spectroscopy and density functional theory calculations. From the photoemission spectra, we observe a shift of about 0.7 eV for the highest occupied molecular orbital, which originates from the transition of phase in the organic molecular thin film (from the interface phase to the bulk phase). On the other hand, we find 0.2 eV band bending at the CuPc/BP interface while the formation of an interface dipole is very small. According to our photoemission spectrum and theoretical simulation, we also define that the interaction between CuPc and BP is physisorption via van der Waals forces, rather than chemisorption. Our results provide a fundamental understanding of CuPc/BP interfacial interactions that could be important for future two-dimensional organic/inorganic heterostructure devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4997724 | DOI Listing |
Am J Biol Anthropol
September 2024
Institute of Behavioral Science, University of Colorado, Boulder, Colorado, USA.
J Chem Phys
August 2017
Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan 410012, People's Republic of China.
The electronic structure at the organic-inorganic semiconductor interface of π-conjugated copper phthalocyanine (CuPc) on a black phosphorus (BP) crystal surface is studied with photoemission spectroscopy and density functional theory calculations. From the photoemission spectra, we observe a shift of about 0.7 eV for the highest occupied molecular orbital, which originates from the transition of phase in the organic molecular thin film (from the interface phase to the bulk phase).
View Article and Find Full Text PDFJ Am Chem Soc
December 2015
Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China.
Surface-enhanced Raman scattering (SERS) on two-dimensional (2D) layered materials has provided a unique platform to study the chemical mechanism (CM) of the enhancement due to its natural separation from electromagnetic enhancement. The CM stems from the charge interactions between the substrate and molecules. Despite the extensive studies of the energy alignment between 2D materials and molecules, an understanding of how the electronic properties of the substrate are explicitly involved in the charge interaction is still unclear.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
October 2008
Institute of Microelectronics and Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
This paper presents a black film with double period metal-organic cathode structure for reducing the cathode reflection and enhancing the contrast ratio (CR) in organic light emitting diodes (OLEDs). The absorption and destructive interference effect caused by the copper-phthalocyanine (CuPc) and ultra thin aluminum (Al) periodic layers decrease the ambient light. The double-period black film structure (Al/CuPc/Al/CuPc/Al) has the lowest reflected luminance of 2.
View Article and Find Full Text PDFTalanta
April 1997
Department of Industrial Chemistry, Faculty of Engineering, Science University of Tokyo, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162, Japan.
The short-circuit-current response properties of ambient temperature oxygen sensors of the type, Ag|Ag(6)I(4)WO(4)|PbSnF(4)(PSF)| sensing electrode (SE), O(2); SE: mixtures of Pt-black/Pc's/PSF, carbon/Pc's/PSF, Pc's/PSF, Pt-black/PSF, carbon/PSF (phthalocyanines, Pc's: FePc, CoPc, CuPc, H(2)Pc) have been examined to elucidate the roles of the incorporated Pc's, Pt-black and carbon. FePc and CoPc act as the catalyst for the SE-reaction involving the two-electron reduction of oxygen, whereas CuPc and H(2)Pc have not such a catalytic action. The difference is related to the types of the first oxidation of Pc's, i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!