Even though multi-element isotope fractionation patterns provide crucial information with which to identify contaminant degradation pathways in the field, those involving hydrogen are still lacking for many halogenated groundwater contaminants and degradation pathways. This study investigates for the first time hydrogen isotope fractionation during both aerobic and anaerobic biodegradation of 1,2-dichloroethane (1,2-DCA) using five microbial cultures. Transformation-associated isotope fractionation values (ε) were -115 ± 18‰ (aerobic C-H bond oxidation), -34 ± 4‰ and -38 ± 4‰ (aerobic C-Cl bond cleavage via hydrolytic dehalogenation), and -57 ± 3‰ and -77 ± 9‰ (anaerobic C-Cl bond cleavage via reductive dihaloelimination). The dual-element C-H isotope approach (Λ = ΔδH/ΔδC ≈ ε/ε, where ΔδH and ΔδC are changes in isotope ratios during degradation) resulted in clearly different Λ values: 28 ± 4 (oxidation), 0.7 ± 0.1 and 0.9 ± 0.1 (hydrolytic dehalogenation), and 1.76 ± 0.05 and 3.5 ± 0.1 (dihaloelimination). This result highlights the potential of this approach to identify 1,2-DCA degradation pathways in the field. In addition, distinct trends were also observed in a multi- (i.e., ΔδH versus ΔδCl versus ΔδC) isotope plot, which opens further possibilities for pathway identification in future field studies. This is crucial information to understand the mechanisms controlling natural attenuation of 1,2-DCA and to design appropriate strategies to enhance biodegradation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.7b02906 | DOI Listing |
Environ Pollut
December 2024
Nu instruments, Wrexham Industrial Estate, 74 Clywedog Road South, Wrexham LL13 9XS, United Kingdom.
Zinc (Zn) is an essential element for all living organisms, and Zn isotopes play a key role in studying the formation of disease. Despite extensive studies on Zn isotopes in healthy and diseased human tissues, the role of Zn isotopes in urinary stones remains unexplored. This study investigates Zn isotopes in 37 urinary stones using multi-collector inductively coupled plasma mass spectrometry.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, CHN, ETH Zürich, 8092 Zürich, Switzerland.
Coastal sediments are a key contributor to oceanic phosphorus (P) removal, impacting P bioavailability and primary productivity. Vivianite, an Fe(II)-phosphate mineral, can be a major P sink in nonsulfidic, reducing coastal sediments. Despite its importance, vivianite formation processes in sediments remain poorly understood.
View Article and Find Full Text PDFThe conversion of tropical rainforests to agriculture causes population declines and biodiversity loss across taxa. This impacts ants (Formicidae), a crucial tropical group for ecosystem functioning. While biodiversity loss among ants is well documented, the responses of individual ant taxa and their adjustments in trophic strategies to land-use change are little studied.
View Article and Find Full Text PDFChemosphere
December 2024
Département des sciences de la Terre et de l'atmosphère, Université du Québec à Montréal, Montréal, QC, H2X 1Y4, Canada; Geotop Research Centre, Montréal, QC, H2X 3Y7, Canada. Electronic address:
Many processes can contribute to the attenuation of the frequently detected and toxic herbicides atrazine and metolachlor in surface water, including photodegradation. Multi-element compound-specific isotope analysis has the potential to decipher between these different degradation pathways as Cl is a promising tool for both pathway identification and a sensitive indicator of degradation for both atrazine and metolachlor. In this study, photodegradation experiments of atrazine and metolachlor were conducted under simulated sunlight in buffered solutions (direct photodegradation) and with nitrate (indirect photodegradation by OH radicals) to determine kinetics, transformation products and isotope fractionation for C, N and for the first time Cl.
View Article and Find Full Text PDFCurr Microbiol
December 2024
Department of Environmental Science and Engineering, School of Environmental and Chemical Engineering, Shanghai University, 150#, 99 Shangda Road, Shanghai, 200444, China.
Freshwater ecosystem is a significant natural source of CH emission in the atmosphere. To fully understand the dynamics of methane emissions in reservoirs, it is essential to grasp the temporal and vertical distribution patterns, as well as the factors that influence the methanogenic bacterial communities within the sediments. This study investigates the methane dynamics, carbon isotope fractionation (δCH), and abundance of functional microorganisms along the geochemical gradient in the in situ sedimentary column of Hongfeng Reservoir (China).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!