The ECETOC TRA model (presently version 3.1) is often used to estimate worker inhalation and dermal exposure in regulatory risk assessment. The dermal model in ECETOC TRA has not yet been validated by comparison with independent measured exposure levels. This was the goal of the present study. Measured exposure levels and relevant contextual information were gathered via literature search, websites of relevant occupational health institutes and direct requests for data to industry. Exposure data were clustered in so-called exposure cases, which are sets of data from one data source that are expected to have the same values for input parameters in the ECETOC TRA dermal exposure model. For each exposure case, the 75th percentile of measured values was calculated, because the model intends to estimate these values. The input values for the parameters in ECETOC TRA were assigned by an expert elicitation and consensus building process, based on descriptions of relevant contextual information.From more than 35 data sources, 106 useful exposure cases were derived, that were used for direct comparison with the model estimates. The exposure cases covered a large part of the ECETOC TRA dermal exposure model. The model explained 37% of the variance in the 75th percentiles of measured values. In around 80% of the exposure cases, the model estimate was higher than the 75th percentile of measured values. In the remaining exposure cases, the model estimate may not be sufficiently conservative.The model was shown to have a clear bias towards (severe) overestimation of dermal exposure at low measured exposure values, while all cases of apparent underestimation by the ECETOC TRA dermal exposure model occurred at high measured exposure values. This can be partly explained by a built-in bias in the effect of concentration of substance in product used, duration of exposure and the use of protective gloves in the model. The effect of protective gloves was calculated to be on average a factor of 34 in this data set, while factors of five to ten were used in the model estimations. There was also an effect of the sampling method in the measured data on the exposure levels. Exposure cases where sampling was done via an interception method, such as gloves, on average showed a factor of six higher 75th percentiles of measured values than exposure cases where sampling was done via a removal method, such as hand washing. This may partly be responsible for the apparent underestimation of dermal exposure by the model at high exposure values. However, there also appeared to be a relation between expected exposure level (as indicated by the model estimate) and the choice of sampling method.In this study, solid substances used in liquid products were treated as liquids with negligible volatility. The results indicate that the ECETOC TRA dermal exposure model performs equally well for these substances as for liquids. There were suggestions of a difference in performance of the model between solids and liquids.For several parts of the ECETOC TRA dermal model, no or hardly any measured dermal exposure data were available. Therefore, gathering of more dermal exposure levels is recommended, specifically for situations not yet sufficiently covered in the present data set.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/annweh/wxx059 | DOI Listing |
Biomater Res
January 2025
Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.
Cutaneous photoaging, induced by chronic exposure to ultraviolet (UV) radiation, typically manifests as alterations in both the physical appearance and functional properties of the skin and may predispose individuals to cancer development. Recent studies have demonstrated the reparative potential of exosomes derived from mesenchymal stem cells in addressing skin damage, while specific reports highlight their efficacy in ameliorating skin photoaging. However, the precise role of exosomes derived from human hair follicle mesenchymal stem cells (HFMSC-Exos) in the context of cutaneous photoaging remains largely unexplored.
View Article and Find Full Text PDFNeuroscience
January 2025
Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India. Electronic address:
Lead (Pb) is an environmental toxin ubiquitously present in the human environment due to anthropogenic activities and industrialization. Lead can enter the human body through various sources and pathways, such as inhalation, ingestion and dermal contact, leading to detrimental health effects. The majority of lead that enters the body is removed by urine or feces; however, under chronic exposure conditions, lead is not efficient, as lead is absorbed and transferred to numerous organs, such as the brain, liver, kidney, muscles, and heart, and it is ultimately stored in mineralizing tissues such as bones and teeth.
View Article and Find Full Text PDFIntroduction: The aim of this study was to assess the long-term impact and potential effectiveness of our specialized acellular dermal matrix (ADM) in a two-stage breast reconstruction process.
Objective: Opinions regarding the use of ADMs are currently divided. While their positive contribution to reconstructive breast surgery is evident, the results of studies vary depending on specific procedures, patient selection, and techniques employed.
J Hazard Mater
January 2025
Key Laboratory of Sedimentary Basin and Oil and Gas Resources, China Geological Survey, Ministry of Land and Resources & Chengdu Center of Geological Survey, Chengdu 610081, China; College of Materials and Chemistry& Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China. Electronic address:
The distribution and transport of polycyclic aromatic hydrocarbons (PAHs) in urban environments are influenced by both anthropogenic sources and natural landscape features. While previous research has primarily focused on human activities as drivers of PAH pollution, the role of terrain-especially in cities with complex topographies-remains underexplored. To investigate the effect of terrain features on PAH distribution and transport, we analyzed topsoil samples evenly distributed in Chongqing, a city with hilly terrain (elevation: 48-2300 m).
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany. Electronic address:
Particle-bound mercury (PBM) concentrations in particulate matter (PM), PM10 and PM2.5, were investigated during dust and non-dust events at urban and rural sites in Cabo Verde, Africa. During dust events, PBM averaged 35.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!