Lectin-glycan interactions play important roles in many biological systems, but the nature of glycoprotein counter-receptors expressed on cell membranes is often poorly understood. To help overcome this problem, we developed a method based on proximity labeling technology. Using a peroxidase-coupled lectin, addition of H2O2 and tyramide-biotin substrates leads to generation of short-range biotin radicals that biotinylate proteins in the immediate vicinity of the bound lectin, which can subsequently be identified. As a proof-of-principle, sialoadhesin-horseradish peroxidase-human IgG1 Fc recombinant protein constructs were precomplexed with anti-Fc antibodies, bound to human erythrocytes and reacted with H2O2 and tyramide-SS-biotin. The erythrocyte membrane protein with strongest biotinylation was identified as glycophorin A, in agreement with early studies using lectin overlay and reglycosylation approaches. As a further test of the method, the plant lectin MAL II was conjugated with horseradish peroxidase and used in proximity labeling of human erythrocytes. Glycophorin A was again selectively labeled, which is consistent with previous reports that MAL II has high affinity for glycophorin. This method could be applied to other lectins to identify their membrane counter-receptors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5881670 | PMC |
http://dx.doi.org/10.1093/glycob/cwx063 | DOI Listing |
Cell Commun Signal
January 2025
Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Department of Oncology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, PR China. Electronic address:
In recent years, the chiral biological effects of nanomedicines have garnered significant interest. Research has focused on understanding how material chirality affects cellular transcription and metabolism. Stress granules, which are membraneless organelles formed through liquid-liquid phase separation of G3BP1 proteins and related compartments, have been extensively studied and are closely associated with cellular damage repair and metabolism.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Biomedical Engineering, Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA.
Cell surface receptors are pivotal to cancer cell transformation, disease progression, metastasis, early detection, targeted therapy, drug responses, and clinical outcomes. Since they coordinate complex signaling communication networks in the tumor microenvironment, mapping the physical interaction partners of cell surface receptors in vivo is vital for understanding their roles, functional states, and suitability as therapeutic targets. Yet traditional methods like immunoprecipitation and affinity purification-mass spectrometry often fail to detect key but weak or transient receptor-protein interactions.
View Article and Find Full Text PDFCells
January 2025
Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, China.
Glycosylation plays a critical role in various biological processes, yet identifying specific glycosyltransferase substrates remains a challenge due to the complexity of glycosylation. Here, we employ proximity labeling with biotin ligases BASU and TurboID to map the proximitome of MGAT3, a glycosyltransferase responsible for the biosynthesis of the bisecting GlcNAc structure, in HEK293T cells. This approach enriched 116 and 189 proteins, respectively, identifying 17 common substrates shared with bisecting GlcNAc-bearing proteome obtained via intact glycopeptide enrichment methods.
View Article and Find Full Text PDFPLoS Genet
January 2025
Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America.
De novo mutations in the RNA binding protein DDX3X cause neurodevelopmental disorders including DDX3X syndrome and autism spectrum disorder. Amongst ~200 mutations identified to date, half are missense. While DDX3X loss of function is known to impair neural cell fate, how the landscape of missense mutations impacts neurodevelopment is almost entirely unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!