Hard clam extracts induce atypical apoptosis in human gastric cancer cells.

Exp Ther Med

Department of Aquatic Biosciences, National Chiayi University, Chiayi 60004, Taiwan R.O.C.

Published: August 2017

Hard clams (HCs) are a nutritionally high-quality and popular seafood, and are established to be a potent antitumor food. The aim of the present study was to determine whether HC extracts induce apoptosis in the human gastric cancer cell line, AGS. In contrast with previously reported methods of extraction, crude extracts of HC were obtained by freezing and thawing and by a method free of hot water or organic solvents. The composition, quality and properties of the HC extracts were demonstrated to be stable since the extracts that were evaluated by capillary electrophoresis and HPLC analysis at different timepoints were similar. HC extracts also have an inhibitory effect against the survival of AGS cells. Treatment with HC extracts induced a marked sub-G1 DNA peak and reduced the expression of the anti-apoptotic genes BIRC5 and KPNA2. However, hallmarks of classical apoptosis such as DNA fragmentation and apoptotic body formation were not observed, indicating atypical apoptosis. Furthermore, it was revealed that HC extracts interrupted cell cycle progression in AGS cells through altered expression of six cell cycle-associated genes: CDC20, KPNA2, BIRC5, ANAPC2, CDKN1A and RB1. The present findings suggest that HC may contribute to a novel future anticancer agent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5525584PMC
http://dx.doi.org/10.3892/etm.2017.4630DOI Listing

Publication Analysis

Top Keywords

extracts
8
extracts induce
8
atypical apoptosis
8
apoptosis human
8
human gastric
8
gastric cancer
8
ags cells
8
hard clam
4
clam extracts
4
induce atypical
4

Similar Publications

Importance: Mania/hypomania is the pathognomonic feature of bipolar disorder (BD). As BD is often misdiagnosed as major depressive disorder (MDD), replicable neural markers of mania/hypomania risk are needed for earlier BD diagnosis and pathophysiological treatment development.

Objective: To replicate the previously reported positive association between left ventrolateral prefrontal cortex (vlPFC) activity during reward expectancy (RE) and mania/hypomania risk, to explore the effect of MDD history on this association, and to compare RE-related left vlPFC activity in individuals with and at risk of BD.

View Article and Find Full Text PDF

Importance: Obsessive-compulsive and related disorders (OCRDs) encompass various neuropsychiatric conditions that cause significant distress and impair daily functioning. Although standard treatments are often effective, approximately 60% of patients may not respond adequately, underscoring the need for novel therapeutic approaches.

Objective: To evaluate improvement in OCRD symptoms associated with glutamatergic medications as monotherapy or as augmentation to selective serotonin reuptake inhibitors, with a focus on double-blind, placebo-controlled randomized clinical trials (RCTs).

View Article and Find Full Text PDF

GEMLI: Gene Expression Memory-Based Lineage Inference from Single-Cell RNA-Sequencing Datasets.

Methods Mol Biol

January 2025

Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Institute of Bioengineering, Lausanne, Switzerland.

Gene expression memory-based lineage inference (GEMLI) is a computational tool allowing to predict cell lineages solely from single-cell RNA-sequencing (scRNA-seq) datasets and is publicly available as an R package on GitHub. GEMLI is based on the occurrence of gene expression memory, i.e.

View Article and Find Full Text PDF

Single-Cell Profiling of Lineages and Cell Types in the Vertebrate Brain.

Methods Mol Biol

January 2025

Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

CRISPR-Cas tools have recently been adapted for cell lineage tracing during development. Combined with single-cell RNA sequencing, these methods enable scalable lineage tracing with single-cell resolution. Here, I describe, scGESTALTv2, which combines cumulative CRISPR-Cas9 editing of a lineage barcode array with transcriptional profiling via droplet-based single-cell RNA sequencing (scRNA-seq).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!