Rocks excavated in tunnel construction projects for roads and railways throughout Japan often leached out hazardous trace elements like arsenic (As) and selenium (Se) upon their exposure to the environment. In nature, the various oxyanionic species of As and Se not only coexist but also exhibit contrasting adsorption-desorption behaviors, so speciation is a crucial factor in their migration through natural geologic media. In this study, the leaching and transport of arsenite (As), arsenate (As), selenite (Se) and selenate (Se) in four tunnel-excavated rocks from the Cretaceous-Paleocene Yezo forearc basin were investigated using laboratory column experiments supplemented by batch leaching experiments. The single- and consecutive-batch leaching results revealed that As, As, Se and Se were released simultaneously, which could be attributed to the rapid dissolution of trace evaporite salts found in the rocks. Arsenic in the leachates was also predominated by As while Se and Se concentrations were nearly equal, which are both consistent with predictions of equilibrium Eh-pH diagrams. Under intermittent and unsaturated flow, however, periods when As and Se predominated in the effluents were observed. Spatial distributions of As and Se species with depth at the end of the column experiments suggest that migrations of As, As and Se were delayed, the extent of which depended on the rock. These results indicate that migration and speciation of As and Se in the rocks are controlled by preferential adsorption-desorption reactions, the effects of which were most probably magnified by changes in the pH and concentrations of coexisting ions due to intermittent and unsaturated flow.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2017.07.145 | DOI Listing |
ACS Omega
December 2024
Belgian Nuclear Research Centre (SCK CEN), Institute for Nuclear Materials Science, Boeretang 200, Mol B-2400, Belgium.
Separation of high-activity Bi from Ac for targeted alpha therapy is challenging due to the instability of existing sorbents. Surface-modified carbon materials have shown promise for use in inverse Ac/Bi generators. However, previously reported materials with irregular shapes may limit their applications in column separations.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia.
Transforming plastics into single-atom catalysts is a promising strategy for upcycling waste plastics into value-added functional materials. Herein, a graphene-based single-atom catalyst with atomically dispersed FeNCl sites (Fe─N/Cl─C) is produced from high-density polyethylene wastes via one-pot catalytic pyrolysis. The Fe─N/Cl─C catalyst exhibited much higher turnover frequency and surface area normalized activity (K) compared with the Fe─N─C catalyst without axial Cl modulation.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin, China 130021.
Industrial solid wastes like coal fly ash (CFA) and steel slag pose environmental challenges, while the remediation of heavy metal-contaminated water remains a global priority. This study investigates the impact of incorporating steel slag during the synthesis of CFA-based geopolymers (CFAG) on the leaching characteristics of inherent heavy metals in CFA and the Zn adsorption performance of CFAG. Leaching experiments show geopolymerization effectively immobilizes heavy metals including Fe, Cr, As, Cd, and Ti in CFA while having little effect on Mn, V, and Ni.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO, USA; Missouri Water Center, University of Missouri, Columbia, USA. Electronic address:
Polymer-coated controlled-release fertilizers (PC-CRFs) are valued for nutrient efficiency, but concerns remain about the long-term impacts of their plastic coatings on soil health. This study investigates the physicochemical characteristics of two commercially available PC-CRFs, type A and B, and their changes during nutrient release. Accelerated nutrient release experiments were conducted for 25 d in ultrapure water (free water) and saturated soil with five wet-dry cycles.
View Article and Find Full Text PDFJ Contam Hydrol
December 2024
Department of Soil Science, Faculty of Agricultural Sciences, University of Guilan, Rasht 41635-1314, Iran.
Microbially induced calcite precipitation (MICP) while neutralizing soil pH, can lead to pore clogging which in turn may reduce bacteria transport. This study aimed to evaluate the effectiveness of the MICP process for E. coli filtration in two acidic soils.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!