Computing the optical rotation of organic molecules can be a real challenge, and various theoretical approaches have been developed in this regard. A benchmark study of optical rotation of various classes of compounds was carried out by Density Functional Theory (DFT) methods. The aim of the present research study was to find out the best-suited functional and basis set to estimate the optical rotations of selected compounds with respect to experimental literature values. Six DFT functional LSDA, BVP86, CAM-B3LYP, B3PW91, and PBE were applied on 22 different compounds. Furthermore, six different basis sets, i.e., 3-21G, 6-31G, aug-cc-pVDZ, aug-cc-pVTZ, DGDZVP, and DGDZVP2 were also applied with the best-suited functional B3LYP. After rigorous effort, it can be safely said that the best combination of functional and basis set is B3LYP/aug-cc-pVTZ for the estimation of optical rotation for selected compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chir.22737 | DOI Listing |
In this paper, an optically transparent dual-band microwave chiral metamaterial based on indium tin oxide (ITO) strips is proposed. The rotation angle and length of the three ITO strips on the structural layer can be varied to generate two independent frequency bands in the circular dichroism (CD) spectrum. The maximum CD value is 0.
View Article and Find Full Text PDFThis work investigates how misalignments of collimation lenses affect two performance criteria: minimum throughput within an angular window and maximum beam height. Based on these criteria, we establish an alignment concept for the first section of a LiDAR emitter. The performance criteria are derived from the overall LiDAR system requirements and applied to an optical system consisting of a laser diode array source, a microlens array for slow-axis collimation, and an acylinder for fast-axis collimation.
View Article and Find Full Text PDFAs a noninvasive optical method, terahertz time-domain spectroscopy (THz-TDS) has been applied to diagnose the plasma parameters. Previous reports mainly focused on the phase and amplitude changes of THz waves induced by the plasma, while the terahertz polarization characteristics were rarely reported. In this paper, in addition to the plasma electron density and terahertz transmittance, we further applied the terahertz time-domain polarimetry (THz-TDP) method to diagnose the terahertz polarization rotation angles induced by an argon inductively coupled plasma (ICP).
View Article and Find Full Text PDFBioorg Chem
January 2025
Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China. Electronic address:
The C-3 and C-5 substituted 20-deoxyingenol monoesters are important active components in Euphorbiaceae plants. Nonetheless, their similar physical properties make them difficult to distinguish. The present study developed fast and efficient rules for identifying the esterification sites of 20-deoxyingenol based on a series of chemical syntheses of monoesters and literature research, utilizing NMR spectroscopy, optical rotation analysis, and chromatographic retention behavior.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, 109, Acad. G. Bonchev Str., 1113 Sofia, Bulgaria.
Magneto-optical magnetic field/current sensors are based on the Faraday effect, which involves changing the polarized state of light. Polarimetric methods are therefore used for measuring polarization characteristics. Channeled polarimetry allows polarization information to be obtained from the analysis of the spectral domain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!