Bacterial genomes are rife with orphan biosynthetic gene clusters (BGCs) associated with secondary metabolism of unrealized natural product molecules. Often up to a tenth of the genome is predicted to code for the biosynthesis of diverse metabolites with mostly unknown structures and functions. This phenomenal diversity of BGCs coupled with their high rates of horizontal transfer raise questions about whether they are really active and beneficial, whether they are neutral and confer no advantage, or whether they are carried in genomes because they are parasitic or addictive. We previously reported that Salinispora bacteria broadly use the desferrioxamine family of siderophores for iron acquisition. Herein we describe a new and unrelated group of peptidic siderophores called salinichelins from a restricted number of Salinispora strains in which the desferrioxamine biosynthesis genes have been lost. We have reconstructed the evolutionary history of these two different siderophore families and show that the acquisition and retention of the new salinichelin siderophores co-occurs with the loss of the more ancient desferrioxamine pathway. This identical event occurred at least three times independently during the evolution of the genus. We surmise that certain BGCs may be extraneous because of their functional redundancy and demonstrate that the relative evolutionary pace of natural pathway replacement shows high selective pressure against retention of functionally superfluous gene clusters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5776446 | PMC |
http://dx.doi.org/10.1038/ismej.2017.137 | DOI Listing |
PLoS One
January 2025
Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh.
The gram-negative, facultative anaerobic bacterium Morganella morganii is linked to a number of illnesses, including nosocomial infections and urinary tract infections (UTIs). A clinical isolate from a UTI patient in Bangladesh was subjected to high-throughput whole genome sequencing and extensive bioinformatics analysis in order to gather knowledge about the genomic basis of bacterial defenses and pathogenicity in M. morganii.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, People's Republic of China.
Background: Pancreatic ductal adenocarcinoma (PDAC) has a heterogeneous make-up of myeloid cells that influences the therapeutic response and prognosis. However, understanding the myeloid cell at both a genetic and cellular level remains a significant challenge.
Methods: Single-cell RNA sequencing (scRNA-seq) data were downloaded from t the Tumor Immune Single-cell Hub and gene expression data were retrieved from The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database.
Appl Environ Microbiol
January 2025
State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
The biosynthesis of mupirocin, a clinically significant antibiotic produced by sp. NCIMB 10586, is activated by the -acyl homoserine lactone (AHL) MupR/I quorum sensing (QS) system. However, to date, limited research has focused on the influence of global regulators such as the GacS/A two-component system (TCS) on the MupR/I QS system or mupirocin biosynthesis.
View Article and Find Full Text PDFBioTech (Basel)
January 2025
Valent BioSciences, Biorational Research Center, 1910 Innovation Way, Suite 100, Libertyville, IL 60048, USA.
Organisms from the genus feature actinobacteria with complex developmental cycles and a great ability to produce a variety of natural products. These soil bacteria produce more than 2/3 of antibiotics used in medicine, and a large variety of bioactive compounds for industrial, medical and agricultural use. Although spp.
View Article and Find Full Text PDFZool Res
January 2025
National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
Pigeons and certain other avian species produce a milk-like secretion in their crop sacs to nourish offspring, yet the detailed processes involved are not fully elucidated. This study investigated the crop sacs of 225-day-old unpaired non-lactating male pigeons (MN) and males initiating lactation on the first day after incubation (ML). Using RNA sequencing, ribosome profiling, and single-cell transcriptome sequencing (scRNA-seq), we identified a significant up-regulation of genes associated with ribosome assembly and protein synthesis in ML compared to MN.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!