Pancreatic carcinoma is a major cause of cancer-related death in the United States, with a five-year survival rate of approximately 5%. Cytogenetic analysis has identified clinically significant chromosomal abnormalities in numerous malignancies, but it is not utilized in the clinical management of pancreatic carcinoma. We performed conventional and molecular cytogenetic analysis of 16 pancreatic carcinoma cell lines using Giemsa banding and DNA-based fluorescence in situ hybridization (FISH). Conventional cytogenetic analysis revealed a diversity of recurrent and clonal numerical and structural abnormalities in all cell lines analyzed, many of which occurred at loci of genes implicated in pancreatic or related cancers. FISH analysis revealed significant decreases in copy number of numerous tumor-suppressor genes including TP53, CDKN2A, and SMAD4. In some cell lines, amplification of oncogenes HER2 and MYC was also observed. Finally, novel rearrangements involving ARID1A and TGFBR2 were identified in a small subset of cell lines by means of molecular cytogenetic analysis. All in all, these data provide additional insight into recurrent chromosomal abnormalities in pancreatic carcinoma that can potentially be utilized as biomarkers in the clinical management of the disease. Investigation of other aberrations as well as correlation of recurrent ones with clinicopathologic features is warranted in order to assess the utility of cytogenetic analysis of pancreatic carcinoma.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!