We present a wide frequency range, low cost, wireless intracranial pressure monitoring system, which includes an implantable passive sensor and an external reader. The passive sensor consists of two spiral coils and transduces the pressure change to a resonant frequency shift. The external portable reader reads out the sensor's resonant frequency over a wide frequency range (35 MHz-2.7 GHz). We propose a novel circuit topology, which tracks the system's impedance and phase change at a high frequency with low-cost components. This circuit is very simple and reliable. A prototype has been developed, and measurement results demonstrate that the device achieves a suitable measurement distance (>2 cm), sufficient sample frequency (>6 Hz), fine resolution, and good measurement accuracy for medical practice. Responsivity of this prototype is 0.92 MHz/mmHg and resolution is 0.028 mmHg. COMSOL specific absorption rate simulation proves that this system is safe. Considerations to improve the device performance have been discussed, which include the size of antenna, the power radiation, the Analog-to-digital converter (ADC) choice, and the signal processing algorithm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBCAS.2017.2731370 | DOI Listing |
Korean J Neurotrauma
December 2024
Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran.
Objective: This randomized controlled trial (RCT) aimed to compare the short-, mid-, and long-term outcomes in patients with malignant intracranial hypertension undergoing either decompressive craniectomy (DC) or hinge craniotomy (HC).
Methods: In this prospective RCT, 38 patients diagnosed with malignant intracranial hypertension due to ischemic infarction, traumatic brain injury, or non-lesional spontaneous intracerebral hemorrhage, who required cranial decompression, were randomly allocated to the DC and HC groups.
Results: The need for reoperation, particularly cranioplasty, in the DC group was significantly different from that in the HC group.
Cureus
December 2024
Radiology, JCC Diagnostic Imaging, Viana do Castelo, PRT.
We discuss a case of a 19-year-old female who presented with pressure headaches and progressive vision loss. In the emergency department, a series of diagnostic tests were conducted, including CT, MRI, and lumbar puncture with measurement of opening pressure. All these examinations yielded results consistent with the suspected diagnosis of idiopathic intracranial hypertension (IIH).
View Article and Find Full Text PDFBrain Spine
December 2024
Department of Neurosurgery, Hospital de Braga, R. das Sete Fontes, 4710-243, Braga, Portugal.
Introduction: Aneurysmatic subarachnoid hemorrhages (aSAH) are life-threatening events with high mortality and morbidity. Hydrocephalus is a common complication, initially managed with an external ventricular drain (EVD). Persistent hydrocephalus often requires ventriculoperitoneal shunt (VPS) placement to relieve intracranial pressure and prevent further neurological damage.
View Article and Find Full Text PDFWorld J Radiol
December 2024
Research Unit of Radiology and Medical Imaging, School of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece.
Neuroimaging is a paramount element for the diagnosis of idiopathic intracranial hypertension, a condition characterized by signs and symptoms of raised intracranial pressure without the identification of a mass or hydrocephalus being recognized. The primary purpose of this review is to deliver an overview of the spectrum and the specific role of the various imaging findings associated with the condition while providing imaging examples and educational concepts. Clinical perspectives and insights into the disease, including treatment options, will also be discussed.
View Article and Find Full Text PDFCrit Care
January 2025
Brain Physics Laboratory, Department of Clinical Neurosciences, Division of Neurosurgery, University of Cambridge, Cambridge, UK.
Background: The oxygen reactivity index (ORx) reflects the correlation between focal brain tissue oxygen (pbtO) and the cerebral perfusion pressure (CPP). Previous, small cohort studies were conflicting on whether ORx conveys cerebral autoregulatory information and if it is related to outcome in traumatic brain injury (TBI). Thus, we aimed to investigate these issues in a larger TBI cohort.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!