Most event-related potential (ERP)-based brain-computer interface (BCI) spellers primarily use matrix layouts and generally require moderate eye movement for successful operation. The fundamental objective of this paper is to enhance the perceptibility of target characters by introducing motion stimuli to classical rapid serial visual presentation (RSVP) spellers that do not require any eye movement, thereby applying them to paralyzed patients with oculomotor dysfunctions. To test the feasibility of the proposed motion-based RSVP paradigm, we implemented three RSVP spellers: 1) fixed-direction motion (FM-RSVP); 2) random-direction motion (RM-RSVP); and 3) (the conventional) non-motion stimulation (NM-RSVP), and evaluated the effect of the three different stimulation methods on spelling performance. The two motion-based stimulation methods, FM- and RM-RSVP, showed shorter P300 latency and higher P300 amplitudes (i.e., 360.4-379.6 ms; 5.5867- ) than the NM-RSVP (i.e., 480.4 ms; ). This led to higher and more stable performances for FM- and RM-RSVP spellers than NM-RSVP speller (i.e., 79.06±6.45% for NM-RSVP, 90.60±2.98% for RM-RSVP, and 92.74±2.55% for FM-RSVP). In particular, the proposed motion-based RSVP paradigm was significantly beneficial for about half of the subjects who might not accurately perceive rapidly presented static stimuli. These results indicate that the use of proposed motion-based RSVP paradigm is more beneficial for target recognition when developing BCI applications for severely paralyzed patients with complex ocular dysfunctions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNSRE.2017.2736600 | DOI Listing |
Vision Res
January 2025
Centre for Brain and Behaviour, School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK.
The traditional understanding of brain function has predominantly focused on chemical and electrical processes. However, new research in fruit fly (Drosophila) binocular vision reveals ultrafast photomechanical photoreceptor movements significantly enhance information processing, thereby impacting a fly's perception of its environment and behaviour. The coding advantages resulting from these mechanical processes suggest that similar physical motion-based coding strategies may affect neural communication ubiquitously.
View Article and Find Full Text PDFAnimals (Basel)
November 2024
Department of Anesthesiology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany.
The validation of methods for understanding the effects of many diseases and treatments requires the use of animal models in translational research. In this context, sheep have been employed extensively in scientific studies. However, the imposition of experimental conditions upon these animals may result in the experience of discomfort, pain, and stress.
View Article and Find Full Text PDFEvent cameras, inspired by biological vision, offer high dynamic range, excellent temporal resolution, and minimal data redundancy. Precise calibration of event camera systems is essential for applications such as 3D vision. The cessation of extra gray frame production in popular models like the dynamic vision sensor (DVS) poses significant challenges to achieving high-accuracy calibration.
View Article and Find Full Text PDFNanoscale
November 2024
Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, Universidad de Alcala, Alcala de Henares, E-28802 Madrid, Spain.
Alzheimer's disease (AD) is the major cause of irreversible dementia in the elderly population worldwide and one of the major causes of the decrease in the quality of life. Efficient diagnosis and monitoring would allow a fast treatment to delay the appearance of symptoms. Herein, zeolitic imidazole framework (ZIF-8)@Au@catalase micromotors are described for motion-based sensing of copper as a marker of AD.
View Article and Find Full Text PDFCurr Biol
November 2024
Department of Brain and Cognitive Sciences, Center for Visual Science, University of Rochester, Rochester, NY 14627, USA. Electronic address:
For the brain to compute object motion in the world during self-motion, it must discount the global patterns of image motion (optic flow) caused by self-motion. Optic flow parsing is a proposed visual mechanism for computing object motion in the world, and studies in both humans and monkeys have demonstrated perceptual biases consistent with the operation of a flow-parsing mechanism. However, the neural basis of flow parsing remains unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!