Accurate identification of the needle target is crucial for effective epidural anesthesia. Currently, epidural needle placement is administered by a manual technique, relying on the sense of feel, which has a significant failure rate. Moreover, misleading the needle may lead to inadequate anesthesia, post dural puncture headaches, and other potential complications. Ultrasound offers guidance to the physician for identification of the needle target, but accurate interpretation and localization remain challenges. A hybrid machine learning system is proposed to automatically localize the needle target for epidural needle placement in ultrasound images of the spine. In particular, a deep network architecture along with a feature augmentation technique is proposed for automatic identification of the anatomical landmarks of the epidural space in ultrasound images. Experimental results of the target localization on planes of 3-D as well as 2-D images have been compared against an expert sonographer. When compared with the expert annotations, the average lateral and vertical errors on the planes of 3-D test data were 1 and 0.4 mm, respectively. On 2-D test data set, an average lateral error of 1.7 mm and vertical error of 0.8 mm were acquired.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2017.2739110DOI Listing

Publication Analysis

Top Keywords

needle target
16
identification needle
8
epidural needle
8
needle placement
8
ultrasound images
8
planes 3-d
8
compared expert
8
average lateral
8
test data
8
needle
7

Similar Publications

Since its introduction, vaccination has heavily improved health outcomes. However, implementing vaccination efforts can be challenging, particularly in low and middle-income countries with warmer climates. Microneedle technology has been developed for its simple and relatively painless applications of vaccines.

View Article and Find Full Text PDF

Background: The global emergence of the Covid-19 pandemic in 2019 posed unprecedented challenges to healthcare systems, disrupting routine services and necessitating swift adaptations. Harm reduction programs, vital for addressing substance use-related health risks, faced unique challenges during the pandemic, impacting vulnerable populations. This study focuses on the repercussions of Covid-19 on harm reduction policies in Iran, specifically examining the distribution of condoms, syringes, and methadone to high-risk individuals attending Triangle Centers.

View Article and Find Full Text PDF
Article Synopsis
  • Intervertebral disc degeneration (IVDD) is a major cause of low back pain, and while Sirt1 agonists show promise in protecting intervertebral discs, the exact mechanisms involved are not fully understood.
  • The study utilized various models to investigate the role of Sirt1 in disc cell inflammation and homeostasis, revealing that Sirt1 overexpression can inhibit inflammation and matrix degradation in degenerating discs.
  • Findings suggest that Sirt1 regulates inflammation by negatively impacting Lipocalin 2, signaling a potential pathway for developing treatments aimed at preventing IVDD progression.
View Article and Find Full Text PDF

An adjustable and scalable method for the continuous flow synthesis of cupric oxide nanoparticles (CuO NPs), targetted the reduction of their activity to synthetic biomembranes to inform the fabrication of nanoparticles (NPs) with reduced toxicity for commercial applications. By manipulating key factors; temperature, residence time, and the ratio of precursor to reductant, precise control over the morphology of CuO NPs is achieved with X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirming the formation of needle-shaped CuO NPs. One-variable-at-a-time studies reveal a relationship between the synthesis conditions and the characteristics of the resultant NPs, with CuO NPs varying controllably between 10-50 nanometres in length and 4-10 nanometres in width.

View Article and Find Full Text PDF

Multi-Layered Microneedles Loaded with Microspheres.

AAPS PharmSciTech

January 2025

School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia, 30332-0100, U.S.A..

Delivery of therapies into skin is attractive for medical indications including vaccination and treatment of dermatoses but is highly constrained by the stratum corneum barrier. Microneedle (MN) patches have emerged as a promising technology to enable non-invasive, intuitive, and low-cost skin delivery. When combined with biodegradable polymer formulations, MN patches can further enable controlled-release drug delivery without injection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!