Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Developing electrospun nanofiber/nanoparticle composites (ENNCs) is an emerging strategy for immobilizing functional particles for a variety of applications. The radial location of the particle along the fiber, either at the surface or in the bulk, has implication into the resulting properties. To explore particle location along fibers, ZIF-8 impregnated poly(ethylene oxide) (PEO) nanofibers are formed by electrospinning particle suspensions. Fibers impregnated with two different ZIF-8 particle sizes (200 nm and 12.5 μm) were electrospun and shown by nitrogen porosimetry to be nearly completely wrapped by PEO in each case at loadings near 10 wt %. This was favorably compared to developed theory of polymeric membrane encapsulated particles and extended to other electrospun fiber/particle composites through a brief literature review. ENNCs with varying loadings of nanosized ZIF-8 particles were then fabricated and tested with nitrogen porosimetry to find that the particles became available for adsorption at the surface of the fibers starting from 25 wt % (28 vol %) loading. This suggests that the particles are kinetically trapped at this loading level since, if allowed to exhibit random close-packing, the ZIF-8 would be expected to fully imbedded inside the fibers up to 56 vol % loading.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.7b01978 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!