A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of Particle Size and Loading on Particle Accessibility in Electrospun Poly(ethylene oxide) and ZIF-8 Composite Fibers: Experiments and Theory. | LitMetric

Influence of Particle Size and Loading on Particle Accessibility in Electrospun Poly(ethylene oxide) and ZIF-8 Composite Fibers: Experiments and Theory.

Langmuir

Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, 501 East Tyler Mall, Tempe, Arizona 85287, United States.

Published: September 2017

Developing electrospun nanofiber/nanoparticle composites (ENNCs) is an emerging strategy for immobilizing functional particles for a variety of applications. The radial location of the particle along the fiber, either at the surface or in the bulk, has implication into the resulting properties. To explore particle location along fibers, ZIF-8 impregnated poly(ethylene oxide) (PEO) nanofibers are formed by electrospinning particle suspensions. Fibers impregnated with two different ZIF-8 particle sizes (200 nm and 12.5 μm) were electrospun and shown by nitrogen porosimetry to be nearly completely wrapped by PEO in each case at loadings near 10 wt %. This was favorably compared to developed theory of polymeric membrane encapsulated particles and extended to other electrospun fiber/particle composites through a brief literature review. ENNCs with varying loadings of nanosized ZIF-8 particles were then fabricated and tested with nitrogen porosimetry to find that the particles became available for adsorption at the surface of the fibers starting from 25 wt % (28 vol %) loading. This suggests that the particles are kinetically trapped at this loading level since, if allowed to exhibit random close-packing, the ZIF-8 would be expected to fully imbedded inside the fibers up to 56 vol % loading.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.7b01978DOI Listing

Publication Analysis

Top Keywords

polyethylene oxide
8
nitrogen porosimetry
8
particle
5
zif-8
5
fibers
5
particles
5
influence particle
4
particle size
4
loading
4
size loading
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!