For better removal of excessive free radicals and harmful bacteria from the human body, the development of synergistic antioxidant and antibacterial agents is urgently required. Herein, we designed novel temperature-sensitive, curcumin (Cur)-loaded nanogels for the application of scavenging reactive oxygen species and killing pathogenic bacteria. Photothermal sterilization, different from traditional antibiotics, is a promising and effective treatment for pathogenic bacterial infection. The nanogels were fabricated by using poly(N-isopropylacrylamide) (a temperature-sensitive hydrogel) to encapsulate poly(3,4-ethylenedioxythiophene) nanoparticles (photothermal agents) and Cur through a reformative precipitation polymerization. When triggered by near-IR light, the Cur-loaded nanogels exhibited high (56.8 %), and excellent temperature-sensitive effects. Moreover, the light-induced temperature increase can also weaken the interaction between the networks of PNIPAAm and Cur, to show excellent antioxidant and antibacterial performance (90 % cell death) of the nanogels.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201702796DOI Listing

Publication Analysis

Top Keywords

photothermal sterilization
8
antioxidant antibacterial
8
cur-loaded nanogels
8
nanogels
5
design fabrication
4
temperature-sensitive
4
fabrication temperature-sensitive
4
temperature-sensitive nanogels
4
nanogels controlled
4
controlled drug
4

Similar Publications

Photocatalytic water disinfection technology is highly promising in off-grid areas due to abundant year-round solar irradiance. However, the practical use of powdered photocatalysts is impeded by limited recovery and inefficient inactivation of stress-resistant bacteria in oligotrophic surface water. Here we prepare a floatable monolithic photocatalyst with ZIF-8-NH loaded Ag single atoms and nanoparticles (Ag/ZIF).

View Article and Find Full Text PDF

A multifunctional biosensor for selective identification, sensitive detection and efficient photothermal sterilization of Salmonella typhimurium and Staphylococcus aureus.

Anal Chim Acta

February 2025

Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, PR China. Electronic address:

Background: The foodborne pathogens, e.g., Salmonella typhimurium (S.

View Article and Find Full Text PDF

A tactfully designed photothermal agent collaborating with ascorbic acid for boosting maxillofacial wound healing.

Natl Sci Rev

February 2025

Department of Oral Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University. State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases. Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China.

Maxillofacial injuries that may cause severe functional and aesthetic damage require effective and immediate management due to continuous exposure to diverse microbial populations. Moreover, drug resistance, biofilm formation, and oxidative stress significantly impede timely bacterial removal and immune function, making the exploration of advanced materials for maxillofacial wound healing an appealing yet highly challenging task. Herein, a near-infrared photothermal sterilization agent was designed, encapsulated with liposomes and coated with ascorbic acid known for its antioxidant and immune-regulatory functions.

View Article and Find Full Text PDF

Carbonized Plant Powder Gel for Rapid Hemostasis and Sterilization in Regard to Irregular Wounds.

Nanomaterials (Basel)

December 2024

Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.

Irregularly shaped wounds cause severe chronic infections, which have attracted worldwide attention due to their high prevalence and poor treatment outcomes. In this study, we designed a new composite functional dressing consisting of traditional Chinese herb carbonized plant powder (CPP) and a polyacrylic acid (PAA)/polyethylenimine (PEI) gel. The rapid gelation of the dressing within 6-8 s allowed the gel to be firmly attached to an irregularly shaped wound surface and avoided powder detachment.

View Article and Find Full Text PDF

Injectable dual-network hyaluronic acid nanocomposite hydrogel for prevention of postoperative breast cancer recurrence and wound healing.

Int J Biol Macromol

December 2024

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541001, PR China.

High locoregional recurrence rates and potential wound infections remain a significant challenge for postoperative breast cancer patients. Herein, we developed a dual-network hyaluronic acid (HA) nanocomposite hydrogel composed of herring sperm DNA (hsDNA) bridged methacrylated HA (HAMA) and FeMg-LDH-ppsa nanohybrid chelated catechol-modified HA (HADA) for the prevention of breast cancer recurrent, anti-infection, and promoting wound healing. Dynamic reversible hsDNA cross-linking combined with metal-catechol chelating renders the hydrogel injectability, rapid self-healing ability, and enhanced mechanical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!