In this paper we demonstrate the combination of supported membranes and so-called flat microfluidics, which enables one to manipulate liquids on flat chip surfaces via "inverse piezoelectric effect". Here, an alternating external electric field applied to the inter-digital transducers excites a surface acoustic wave on a piezoelectric substrate. Employing lithographic patterning of self-assembled monolayers of alkoxysilanes, we successfully confine a free-standing, hemi-cylindrical channel with the volume of merely 7 µL . The experimentally determined maximum flow velocity scales linearly with the acoustic power, suggesting that our current setup can drive liquids at the speed of up to 7 cm/s (corresponding to a shear rate of 280 s) without applying high pressures using a fluidic pump. After the establishment of the functionalization of fluidic chip surfaces with supported membranes, we deposited asymmetric supported membranes displaying well-defined mannose domains and monitored the dynamic adhesion of HB101 expressing mannose-binding receptors. Despite of the further technical optimization required for the quantitative analysis, the obtained results demonstrate that the combination of supported membranes and flat fluidics opens a large potential to investigate dynamic adhesion of cells on biofunctional membrane surfaces with the minimum amount of samples, without any fluidic pump.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5452083PMC
http://dx.doi.org/10.3390/ma6020669DOI Listing

Publication Analysis

Top Keywords

supported membranes
24
flat fluidics
8
membranes displaying
8
mannose domains
8
demonstrate combination
8
combination supported
8
chip surfaces
8
fluidic pump
8
dynamic adhesion
8
supported
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!