Nanosilver, due to its small particle size and enormous specific surface area, facilitates more rapid dissolution of ions than the equivalent bulk material; potentially leading to increased toxicity of nanosilver. This, coupled with their capacity to adsorb biomolecules and interact with biological receptors can mean that nanoparticles can reach sub-cellular locations leading to potentially higher localized concentrations of ions once those particles start to dissolve or degrade . Further complicating the story is the capacity for nanoparticles to generate reactive oxygen species, and to interact with, and potentially disturb the functioning of biomolecules such as proteins, enzymes and DNA. The fact that the nanoparticle size, shape, surface coating and a host of other factors contribute to these interactions, and that the particles themselves are evolving or ageing leads to further complications in terms of elucidating mechanisms of interaction and modes of action for silver nanoparticles, in contrast to dissolved silver species. This review aims to provide a critical assessment of the current understanding of silver nanoparticle toxicity, as well as to provide a set of pointers and guidelines for experimental design of future studies to assess the environmental and biological impacts of silver nanoparticles. In particular; in future we require a detailed description of the nanoparticles; their synthesis route and stabilisation mechanisms; their coating; and evolution and ageing under the exposure conditions of the assay. This would allow for comparison of data from different particles; different environmental or biological systems; and structure-activity or structure-property relationships to emerge as the basis for predictive toxicology. On the basis of currently available data; such comparisons or predictions are difficult; as the characterisation and time-resolved data is not available; and a full understanding of silver nanoparticle dissolution and ageing under different conditions is observed. Clear concerns are emerging regarding the overuse of nanosilver and the potential for bacterial resistance to develop. A significant conclusion includes the need for a risk-benefit analysis for all applications and eventually restrictions of the uses where a clear benefit cannot be demonstrated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5458943PMC
http://dx.doi.org/10.3390/ma6062295DOI Listing

Publication Analysis

Top Keywords

silver nanoparticle
12
future studies
8
silver nanoparticles
8
understanding silver
8
environmental biological
8
nanoparticles
5
silver
5
mechanisms silver
4
nanoparticle
4
nanoparticle release
4

Similar Publications

Extensive uses of silver nanoparticles (Ag NPs) in different industries result in exposure to these nanoparticle imperatives in our daily lives. Resveratrol is found in many plants as a natural compound. The present study aimed to estimate the renal toxic effects of Ag NPs in adult male albino rats and the underlying relevant mechanisms while studying the possible role of resveratrol in ameliorating these effects.

View Article and Find Full Text PDF

Novel silver nanoparticle-based biomaterials for combating biofilms.

Front Microbiol

January 2025

Laboratory of Biotechnology, Department of Microbiology, Agricultural Research Center, Animal Health Research Institute, Zagazig, Egypt.

Background: is a significant nosocomial pathogen that has developed resistance to multiple antibiotics, often forming biofilms that enhance its virulence. This study investigated the efficacy of a novel nanoformulation, AgNPs@chitosan-NaF, in combating biofilms.

Methods: Antimicrobial susceptibility testing was performed to assess the antibiotic resistance profile of isolates.

View Article and Find Full Text PDF

Advancing DNA Structural Analysis: A SERS Approach Free from Citrate Interference Combined with Machine Learning.

J Phys Chem Lett

January 2025

State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.

Surface-enhanced Raman spectroscopy (SERS) has become an indispensable tool for biomolecular analysis, yet the detection of DNA signals remains hindered by spectral interference from citrate ions, which overlap with key DNA features. This study introduces an innovative, ultrasensitive SERS platform utilizing thiol-modified silver nanoparticles (Ag@SDCNPs) that overcomes this challenge by eliminating citrate interference. This platform enables direct, interference-free detection and structural characterization of a wide range of DNA conformations, including single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), i-motif, hairpin, G-quadruplex, and triple-stranded DNA (tsDNA).

View Article and Find Full Text PDF

Hydrogel dressings with good biocompatibility and extracellular matrix mimetic structure are important for the treatment of skin wounds. In this study, antimicrobial silver nanoparticles (Ag NPs) loaded with konjac glucomannan and silk fibroin (KGM/SF) composite hydrogel were used as a dressing for wound healing. The uniform distribution of Ag NPs on the surface of the hydrogels imparts excellent antibacterial properties to KGM/SF composite hydrogels.

View Article and Find Full Text PDF

In the published article "Silver nanoparticles directly formed on natural macroporous matrix and their anti-microbial activities, Nanotechnology 18 (2007) 055605", the figure caption of Figure 8 has an error in immersion time, and the correct caption is given in this Corrigendum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!