The demand for transparent conductors is expected to grow rapidly as electronic devices, such as touch screens, displays, solid state lighting and photovoltaics become ubiquitous in our lives. Doped metal oxides, especially indium tin oxide, are the commonly used materials for transparent conductors. As there are some drawbacks to this class of materials, exploration of alternative materials has been conducted. There is an interest in films of carbon nanomaterials such as, carbon nanotubes and graphene as they exhibit outstanding properties. This article reviews the synthesis and assembly of these films and their post-treatment. These processes determine the film performance and understanding of this platform will be useful for future work to improve the film performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5458954PMC
http://dx.doi.org/10.3390/ma6062155DOI Listing

Publication Analysis

Top Keywords

transparent conductors
12
films carbon
8
carbon nanomaterials
8
film performance
8
nanomaterials transparent
4
conductors demand
4
demand transparent
4
conductors expected
4
expected grow
4
grow rapidly
4

Similar Publications

Transparent conducting oxides (TCOs) are widely used in modern electronics because they have both high transmittance and good conductivity, which is beneficial for many applications such as light-emitting diodes. Tailoring electronic states and hence the conductive types by design is important for developing new materials with optimal properties for TCOs. SnO, with a wide band gap, low cost, no toxins, and high stability, is a promising host material for TCOs.

View Article and Find Full Text PDF

Gel with ionic conductivity and stretchability is considered as an ideal alternative to conventional rigid metallic conductors in the flexible electronics. However, present gels suffer from poor mechanical properties and crack sensitivity due to their weak intermolecular (chain) interactions and homogeneous network structure. Herein, a transparent and tough polyacrylamide (PAM) ionogel is designed, which can form stress-induced microphase-separated domains with high hydrogen bonding density under stress to inhibit crack propagation.

View Article and Find Full Text PDF

Untethered electrical stimulation or pacing of the heart is of critical importance in addressing the pressing needs of cardiovascular diseases in both clinical therapies and fundamental studies. Among various stimulation methods, light illumination-induced electrical stimulation via photoelectric effect without any genetic modifications to beating cells/tissues or whole heart has profound benefits. However, a critical bottleneck lies in the lack of a suitable material with tissue-like mechanical softness and deformability and sufficient optoelectronic performances toward effective stimulation.

View Article and Find Full Text PDF

This work presents a design approach for optically transparent low-loss frequency selective surfaces (FSSs) based on the simultaneous optimization of a conductive layer, dielectric layer, and fabrication process. Three bandpass FSSs working in millimeter-wave bands with low insertion losses are investigated and fabricated based on low-loss Rogers RT5870 and cyclic olefin copolymer (COC) substrates. The measured results of the RT5870 based FSS (case 1) and COC based FSS (case 2) indicate that the COC substrate possesses lower dielectric loss tangent at the K band.

View Article and Find Full Text PDF

This study presents a theoretical investigation into the phase stability, electronic, and optical properties of off-stoichiometricZrxTi1-xIrSb(= 0, 0.0625, 0.1875, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!