Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Human leucocyte antigens (HLAs) are responsible for the display of peptide fragments for recognition by T-cell receptors. The gene family encoding them is thus integral to human adaptive immunity, and likely to be under strong pathogen selection. Despite this, it has proved difficult to demonstrate specific examples of pathogen-HLA coevolution. Selection from multiple pathogens simultaneously could explain why the evolutionary signatures of particular pathogens on HLAs have proved elusive. Here, we present an individual-based model of HLA evolution in the presence of two mortality-causing pathogens. We demonstrate that it is likely that individual pathogen species causing high mortality have left recognizable signatures on the HLA genomic region, despite more than one pathogen being present. Such signatures are likely to exist at the whole-population level, and involve haplotypic combinations of HLA genes rather than single loci.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S0031182017001159 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!