Coadsorption of CO and water under ultrahigh vacuum (UHV) conditions can be considered as a model system for the interaction of metal surfaces with CO in an aqueous electrochemical environment. Nevertheless, this has rarely been investigated, and in particular for catalytically relevant bimetallic systems, there is hardly any information available. Here we report results of a low-temperature scanning tunneling microscopy (STM) study on the adsorption and coadsorption of CO and water on a Ru(0001) surface covered with a pseudomorphic Pt film of 2 or 3 monolayers thickness. The role of kinetic effects introduced by the sequence of adsorption, either pre-adsorption of CO followed by water adsorption or pre-adsorption of water followed by CO adsorption, on the adlayer structure formation will be demonstrated and discussed. Furthermore, the data show a distinct influence of the thickness of the Pt film, reflecting changes in the chemistry of the Pt surface due to electronic interactions with the underlying Ru(0001) substrate ('vertical ligand effects'). Implications of the present findings on the interaction of CO with these bimetallic PtRu surfaces under electrochemical conditions will be discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7cp03961a | DOI Listing |
Sci Rep
January 2025
School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou, 450045, China.
In order to solve the problems of rutting and early fatigue cracks in emulsified asphalt cold recycled pavement, and the shortage of natural stone resources and new environmental hazards caused by the use of traditional limestone powder filler. In this study, coal gangue powder was added to prepare Emulsified Asphalt Mastic (EAM) to improve the rheological properties and fatigue performance. A series of tests, including frequency scanning, temperature scanning, Multiple Stress Creep Recovery (MSCR), Linear Amplitude Scanning (LAS), and Fourier Transform Infrared spectroscopy (FTIR) were conducted.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, China. Electronic address:
This work prepared the soy protein isolate (SPI)-beeswax-based bigel loaded with β-carotene, and the effect of printing temperature (PT) on texture regulation was investigated. During printing, increasing PT weakened the rheological properties and printability of ink. However, the mechanical strength and deformation resistance at non-linear regions of products were strengthened after printing.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia, Bangladesh.
Hematite (α-FeO) nanoparticles have been synthesized from waste source of iron which contains a prominent amount of iron (93.2 %) and investigated the effect of low temperature calcination. The two-step synthesis method involved preparing ferrous sulfate through acid leaching process followed by oxidation and calcination at temperatures ranging from 200 to 400 °C to produce the desired α-FeO in nano form.
View Article and Find Full Text PDFACS Omega
December 2024
School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China.
Alkaline fusion is a pivotal process influencing the cost of synthesizing zeolite from coal gangue. This study examined the effects of alkaline fusion temperature ( ), treatment duration ( ) and the NaOH/coal gangue weight ratio ( ) on the composition and properties of the products, as well as their adsorption capacities for Cd ( ) and Pb ( ). Response surface methodology (RSM) was employed to analyze the interactions among these factors, and the adsorption mechanisms for Cd and Pb were investigated using X-ray diffraction, scanning electron microscopy-EDS, Fourier transform infrared, X-ray photoelectron spectroscopy, and N adsorption-desorption techniques.
View Article and Find Full Text PDFACS Omega
December 2024
School of Earth Resources, China University of Geosience, Wuhan 430074, P. R. China.
The pore structure of shale is a key factor affecting the occurrence and flow of shale gas, and fractal dimensions can be used to quantitatively describe the complexity of the shale pore structure. In this study, the Leping Formation shale in the Junlian block of the southern Sichuan Basin was investigated. The pore structure characteristics of this shale were examined via low-pressure CO adsorption (LP-COA) and low-temperature N adsorption (LT-NA) methods via field emission scanning electron microscopy (FE-SEM), shale geochemistry, and mineral composition analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!