Ecological stoichiometry uses the mass balance of elements to predict energy and elemental fluxes across different levels of ecological organization. A specific prediction of ecological stoichiometry is the growth rate hypothesis (GRH), which states that organisms with faster growth or reproductive rates will require higher phosphorus content for nucleic acid and protein synthesis. Although parasites are found ubiquitously throughout ecosystems, little is understood about how they affect nutrient imbalances in ecosystems. We (1) tested the GRH by determining the carbon (C), nitrogen (N), and phosphorus (P) content of parasitic trematodes and their intermediate host, the freshwater snail , and (2) used this framework to determine the trematode effects on host nutrient excretion and metabolism. Snail and parasite tissues were analyzed for elemental content using a CHN analyzer and soluble reactive phosphorus (SRP) methods. Ammonium and SRP assays were used to estimate N and P excretion rates. A respirometer was used to calculate individual snail metabolism. Trematode tissues contained lower C:P and N:P (more P per unit C and N) than the snail tissues. Snail gonadal tissues more closely resembled the elemental content of parasite tissues, although P content was 13% higher in the gonad than the trematode tissues. Despite differences in elemental content, N and P excretion rates of snails were not affected by the presence of parasites. Parasitized snails maintained faster metabolic rates than nonparasitized snails. However, the species of parasite did not affect metabolic rate. Together, this elemental imbalance between parasite and host, and the altered metabolic rate of infected snails may lead to broader parasite effects in stream ecosystems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5551083 | PMC |
http://dx.doi.org/10.1002/ece3.3129 | DOI Listing |
J Air Waste Manag Assoc
January 2025
Center for Applied Climate Sciences, University of Southern Queensland, Toowoomba, Australia.
Densification of biomass through pelletizing offers a promising approach to producing clean biofuels from renewable resources. This study, which investigates the impact of additive blends on wheat straw pellet making and upgrading the physiochemical properties, has revealed exciting possibilities. Five additives, including sawdust (SD), bentonite clay (BC), corn starch (S), crude glycerol (CG), and biochar (BioC), were chosen for this study.
View Article and Find Full Text PDFItal J Food Saf
November 2024
Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy.
This research aims to monitor the conservation status of the lipid and mineral contents of four shelf-stable insect-based products (yellow mealworm, house cricket, mole cricket, and silkworm) marketed online. A total of 32 single-species packs were purchased from various online commercial suppliers. Moisture, lipids, fatty acids, titratable acidity, mineral elements, and primary and secondary lipid oxidation products were determined.
View Article and Find Full Text PDFMicrosc Res Tech
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.
Green synthesis of nanoparticles (NPs) is preferred for its affordability and environmentally friendly approach. This study explored the synthesis and characterization of silver NPs (AgNPs) and examined their impact on the growth of Zea mays, both alone and in combination with nickel chloride (NiCl). A methanolic leaf extract was combined with silver nitrate to synthesize AgNPs.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, 55181-83111, Iran.
Salinity is one of the predominant abiotic stressors that reduce plant growth, yield, and productivity. Ameliorating salt tolerance through nanotechnology is an efficient and reliable methodology for enhancing agricultural crops yield and quality. Nanoparticles enhance plant tolerance to salinity stress by facilitating reactive oxygen species detoxification and by reducing the ionic and osmotic stress effects on plants.
View Article and Find Full Text PDFSci Rep
January 2025
Zhalyn LLP, Almaty, 050000, Kazakhstan.
The increasing environmental issues and growing interest in utilizing natural resources have led to heightened attention towards renewable energy sources. This has spurred the exploration of sustainable approaches, including ecosystem restoration. The soil's ability to retain moisture increases with the rise in organic carbon content.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!