The intestinal microbiota plays a major role in host development, metabolism, and health. To date, few longitudinal studies have investigated the causes and consequences of microbiota variation in wildlife, although such studies provide a comparative context for interpreting the adaptive significance of findings from studies on humans or captive animals. Here, we investigate the impact of seasonality, diet, group membership, sex, age, and reproductive state on gut microbiota composition in a wild population of group-living, frugi-folivorous primates, Verreaux's sifakas (). We repeatedly sampled 32 individually recognizable animals from eight adjacent groups over the course of two different climatic seasons. We used high-throughput sequencing of the 16S rRNA gene to determine the microbiota composition of 187 fecal samples. We demonstrate a clear pattern of seasonal variation in the intestinal microbiota, especially affecting the Firmicutes-Bacteroidetes ratio, which may be driven by seasonal differences in diet. The relative abundances of certain polysaccharide-fermenting taxa, for example, Lachnospiraceae, were correlated with fruit and fiber consumption. Additionally, group membership influenced microbiota composition independent of season, but further studies are needed to determine whether this pattern is driven by group divergences in diet, social contacts, or genetic factors. In accordance with findings in other wild mammals and primates with seasonally fluctuating food availability, we demonstrate seasonal variation in the microbiota of wild Verreaux's sifakas, which may be driven by food availability. This study adds to mounting evidence that variation in the intestinal microbiota may play an important role in the ability of primates to cope with seasonal variation in food availability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5551086 | PMC |
http://dx.doi.org/10.1002/ece3.3148 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!