Introduction: Mineral trioxide aggregate (MTA) can be used in the treatment of irritated vital pulp and repair of root perforations. However, the initial reaction of inflammatory cells to this material and also its setting time are not ideal. Studies have shown that disodium hydrogen phosphate (DHP), decreases the setting time of MTA, with no effect on its pH. This study was undertaken to evaluate the effect of DHP on push-out bond strength of MTA at different liquid-to-powder ratios.

Methods And Materials: A total of 120 samples were prepared from the middle third of the roots of single-rooted teeth for evaluation of push-out bond strength. The push-out bond strength was measured in both groups after 72 h at different liquid-to-powder ratios, including 0.33:1, 0.5:1 and 0.6:1. Factorial ANOVA and Tukey's HSD post-hoc tests were used to compare the differences between the independent groups. Statistical significant was set at <0.05.

Results: The push-out bond strengths of pure MTA and MTA+DHP groups were 10.96±5.78 and 13.32±5.03, respectively. Tukey's HSD post-hoc test revealed significant differences between the two groups. Furthermore, there were no interactive effect between material and the liquid: powder ratio.

Conclusion: Incorporation of DHP into MTA resulted in an increase in push-out bond strength of MTA, and an increase in liquid-to-powder ratio resulted in a decrease in push-out bond strength.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5527202PMC
http://dx.doi.org/10.22037/iej.v12i3.15600DOI Listing

Publication Analysis

Top Keywords

bond strength
16
push-out bond
12
mineral trioxide
8
trioxide aggregate
8
disodium hydrogen
8
hydrogen phosphate
8
liquid-to-powder ratios
8
setting time
8
bond
4
strength white
4

Similar Publications

We report a direct application of the molecular tailoring approach-based (MTA-based) method to calculate the individual hydrogen bond (HB) energy in molecular crystal. For this purpose, molecular crystals of nitromalonamide (NMA) and salicylic acid (SA) were taken as test cases. Notably, doing a correlated computation using a large molecular crystal structure is difficult.

View Article and Find Full Text PDF

Sustainable pavement is essential for country development, offering durable, environmentally friendly, and cost-effective infrastructure. For Malaysia, sustainable pavement supports Sustainable Development Goals (SDGs) 9 and 11 while addressing road deterioration caused by increasing traffic volumes and loads. This deterioration shortens pavement service life and necessitates frequent maintenance, driving the need for innovative solutions.

View Article and Find Full Text PDF

In response to the rotary ploughing equipment in the stubble land to implement protective operations, the stubble is large in number and strong in toughness, not easy to crush, resulting in rotary ploughing equipment to produce entanglement and increased resistance to rotary ploughing and other issues. In this study, researchers designed a bionic rotary tillage blade (B-RTB) based on the bionic structural equations of the Marmota claw. A straw-soil complex shear performance test was conducted to investigate the effect of straw on soil shear strength.

View Article and Find Full Text PDF

Statement Of Problem: Comprehensive data are needed on the performance of chemically activated, chairside hard reline materials when used with computer-aided design and computer-aided manufacturing (CAD-CAM) milled polymethyl methacrylate (PMMA) denture bases and conventionally processed bases. This lack of data affects decisions regarding the chairside reline material to be used for improving the fit and retention of relined complete dentures.

Purpose: The purpose of this in vitro study was to evaluate and compare the shear bond strength (SBS) of 3 chemically activated, chairside hard reline materials on CAD-CAM milled and conventional heat-polymerized PMMA denture bases.

View Article and Find Full Text PDF

An Automated Workflow to Discover the Structure-Stability Relations for Radiation Hard Molecular Semiconductors.

J Am Chem Soc

January 2025

Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstraße 7, 91058 Erlangen, Germany.

Article Synopsis
  • Emerging photovoltaics require radiation-hard materials for use in outer space, but predicting their resilience to high-energy radiation is currently a challenge.
  • The research combines lab automation and machine learning to rapidly identify and test over 130 organic hole transport materials, assessing their stability under UVC light exposure.
  • Findings reveal that materials with fused aromatic rings are more stable, while certain chemical groups negatively impact stability, providing valuable insights for future molecular design in creating durable semiconductors.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!