Vascular endothelial permeability transition does not cause significant lesions, but enhanced permeability may contribute to the development of vascular and other diseases, including atherosclerosis, hypertension, heart failure and cancer. Therefore, elucidating the effect of Particulate Matter 2.5 (PM) on vascular endothelial permeability could help prevent disease that might be caused by PM. Our previous study and the present one revealed that PM significantly increased the permeability of vascular endothelial cells and disrupted the barrier function of the vascular endothelium in Sprague Dawley (SD) rats. We found that the effect occurred mainly through induction of signal transducer and activator of transcription 3 (STAT3) phosphorylation, further transcriptional regulation of microRNA21 (miR-21) and promotion of miR-21 expression. These changes post-transcriptionally repress tissue inhibitor of metalloproteinases 3 (TIMP3) and promote matrix metalloproteinases 9 (MMP9) expression. This work provides evidence that PM exerts direct inhibitory action on vascular endothelial barrier function and might give rise to a number of vascular diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5555104 | PMC |
http://dx.doi.org/10.7150/ijbs.19868 | DOI Listing |
Metabolomics
January 2025
Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
Introduction: Hemodynamic forces play a crucial role in modulating endothelial cell (EC) behavior, significantly influencing blood vessel responses. While traditional in vitro studies often explore ECs under static conditions, ECs are exposed to various hemodynamic forces in vivo. This study investigates how wall shear stress (WSS) influences EC metabolism, focusing on the interplay between WSS and key metabolic pathways.
View Article and Find Full Text PDFPharmacol Rep
January 2025
Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
Cardiovascular illnesses are multifactorial disorders and represent the primary reasons for death worldwide, according to the World Health Organization. As a signaling molecule, nitric oxide (NO) is extremely permeable across cellular membranes owing to its unique molecular features, like its small molecular size, lipophilicity, and free radical properties. Some of the biological effects of NO are vasodilation, inhibition in the growth of vascular smooth muscle cells, and functional regulation of cardiac cells.
View Article and Find Full Text PDFInt Ophthalmol
January 2025
Department of Ophthalmology, The Second Hospital of Jilin University, #218 Ziqiang Street, Changchun, 130041, Jilin, China.
Purpose: The purpose of this study is to investigate the role of Secretogranin III (Scg3) in the pathogenesis of intraocular neovascular diseases and assess its potential as a therapeutic target for novel treatment strategies.
Methods: A literature review was conducted to examine the expression of Scg3 in intraocular neovascular diseases. We reviewed studies on the interaction of Scg3 with its homologous receptors and its effect on endothelial cell proliferation, migration, and vascular permeability-key processes involved in angiogenesis and neovascularization.
Int Ophthalmol
January 2025
Beyoglu Eye Training and Research Hospital, University of Health Sciences, Bereketzade Camii Sk. No:2 Beyoğlu, 34421, Istanbul, Turkey.
Background: To evaluate the efficacy and safety of intravitreal injections of 4 mg (high dose) of aflibercept in treatment-naive patients with neovascular AMD(nAMD) with treat and extend(TREX) dosing regimens, and to determine the frequency of injections.
Methods: In this interventional, retrospective study a total of 15 eyes of 14 patients (eight female and 9 male) with nAMD were included. All patients were examined and OCT imaging was performed at the time of initial presentation, on the day of each injection and at subsequent follow-up visits.
Neuroradiology
January 2025
Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
Background And Purpose: The cortical high-flow sign has been more commonly reported in oligodendroglioma, IDH-mutant and 1p/19q-codeleted (ODG IDHm-codel) compared to diffuse glioma with IDH-wildtype or astrocytoma, IDH-mutant. Besides tumor types, higher grades of glioma might also contribute to the cortical high flow. Therefore, we investigated whether the histological cortical vascular density or CNS WHO grade was associated with the cortical high-flow sign in patients with ODG IDHm-codel.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!