There is considerable interest in improving plant productivity by altering the dynamic responses of photosynthesis in tune with natural conditions. This is exemplified by the 'energy-dependent' form of non-photochemical quenching (), the formation and decay of which can be considerably slower than natural light fluctuations, limiting photochemical yield. In addition, we recently reported that rapidly fluctuating light can produce field recombination-induced photodamage (FRIP), where large spikes in electric field across the thylakoid membrane (Δ) induce photosystem II recombination reactions that produce damaging singlet oxygen (O). Both and FRIP are directly linked to the thylakoid proton motive force (), and in particular, the slow kinetics of partitioning into its ΔpH and Δ components. Using a series of computational simulations, we explored the possibility of 'hacking' partitioning as a target for improving photosynthesis. Under a range of illumination conditions, increasing the rate of counter-ion fluxes across the thylakoid membrane should lead to more rapid dissipation of Δ and formation of ΔpH. This would result in increased rates for the formation and decay of while resulting in a more rapid decline in the amplitudes of Δ-spikes and decreasing O production. These results suggest that ion fluxes may be a viable target for plant breeding or engineering. However, these changes also induce transient, but substantial mismatches in the ATP : NADPH output ratio as well as in the osmotic balance between the lumen and stroma, either of which may explain why evolution has not already accelerated thylakoid ion fluxes. Overall, though the model is simplified, it recapitulates many of the responses seen , while spotlighting critical aspects of the complex interactions between components and photosynthetic processes. By making the programme available, we hope to enable the community of photosynthesis researchers to further explore and test specific hypotheses.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5566881PMC
http://dx.doi.org/10.1098/rstb.2016.0381DOI Listing

Publication Analysis

Top Keywords

proton motive
12
motive force
12
thylakoid proton
8
partitioning Δph
8
formation decay
8
thylakoid membrane
8
ion fluxes
8
photosynthesis
5
hacking thylakoid
4
force improved
4

Similar Publications

Repurposing pinaverium bromide against Staphylococcus and its biofilms with new mechanisms.

AMB Express

December 2024

Department of Laboratory Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine (The First Hospital of Changsha), Central South University, No. 311, Yingpan Road, Changsha, 410005, Hunan, China.

Antibiotic resistance by methicillin-resistant Staphylococcus aureus (MRSA) is an urgent threat to human health. The biofilm and persister cells formation ability of MRSA and Staphylococcus epidermidis often companied with extremely high antimicrobial resistance. Pinaverium bromide (PVB) is an antispasmodic compound mainly used for irritable bowel syndrome.

View Article and Find Full Text PDF

Purification and Reconstitution of Ilyobacter tartaricus ATP Synthase.

Methods Mol Biol

December 2024

Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.

F-type Adenosine triphosphate (ATP) synthase is a membrane-bound macromolecular complex, which is responsible for the synthesis of ATP, the universal energy source in living cells. This enzyme uses the proton- or sodium-motive force to power ATP synthesis by a unique rotary mechanism and can also operate in reverse, ATP hydrolysis, to generate ion gradients across membranes. The FF-ATP synthases from bacteria consist of eight different structural subunits, forming a complex of ~550 kDa in size.

View Article and Find Full Text PDF

Measuring Bacterial Flagellar Motor Dynamics via a Bead Assay.

Methods Mol Biol

December 2024

Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM, Montpellier, France.

The bacterial flagellar motor (BFM) is a rotary molecular machine that drives critical bacterial processes including motility, chemotaxis, biofilm formation, and infection. For over two decades, the bead assay, which measures the rotation of a microparticle attached to the flagellum of a surface-attached bacterium, has been instrumental in deciphering the motor's biophysical mechanisms. This technique has not only quantified the rotational speed and frequency of directional switching as a function of the viscous load on the flagellum but has also revealed the BFM's capacity for mechanosensitive speed modulation, adapting to environmental conditions.

View Article and Find Full Text PDF

Valine potentiates cefoperazone-sulbactam to kill methicillin-resistant .

mSystems

December 2024

State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China.

Unlabelled: Metabolic state-reprogramming approach was extended from Gram-negative bacteria to Gram-positive bacterium methicillin-resistant (MRSA) for identifying desired reprogramming metabolites to synergize existing antibiotic killing to MRSA. Metabolomics comparison between MRSA and methicillin-sensitive showed a depressed metabolic state in MRSA. Valine was identified as the most depressed metabolite/biomarker, and valine, leucine and isoleucine biosynthesis as the most enriched metabolic pathway.

View Article and Find Full Text PDF

Toxin-antitoxin (TA) modules are important mediators of persister cell formation in response to environmental stresses. However, the mechanisms through which persistence is controlled remain poorly understood. , a novel probiotic, can enter a persistent state upon exposure to tetracycline stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!