Cyanobacteria are the most ancient organisms performing oxygenic photosynthesis, and they are the ancestors of plant plastids. All plastids contain the plastid terminal oxidase (PTOX), while only certain cyanobacteria contain PTOX. Many putative functions have been discussed for PTOX in higher plants including a photoprotective role during abiotic stresses like high light, salinity and extreme temperatures. Since PTOX oxidizes PQH and reduces oxygen to water, it is thought to protect against photo-oxidative damage by removing excess electrons from the plastoquinone (PQ) pool. To investigate the role of PTOX we overexpressed rice PTOX fused to the maltose-binding protein (MBP-OsPTOX) in sp. PCC 6803, a model cyanobacterium that does not encode PTOX. The fusion was highly expressed and OsPTOX was active, as shown by chlorophyll fluorescence and P absorption measurements. The presence of PTOX led to a highly oxidized state of the NAD(P)H/NAD(P) pool, as detected by NAD(P)H fluorescence. Moreover, in the PTOX overexpressor the electron transport capacity of PSI relative to PSII was higher, indicating an alteration of the photosystem I (PSI) to photosystem II (PSII) stoichiometry. We suggest that PTOX controls the expression of responsive genes of the photosynthetic apparatus in a different way from the PQ/PQH ratio.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5566879 | PMC |
http://dx.doi.org/10.1098/rstb.2016.0379 | DOI Listing |
World J Microbiol Biotechnol
January 2025
Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, 176061, India.
Understanding the change in plant-associated microbial diversity and secondary metabolite biosynthesis in medicinal plants due to their cultivation in non-natural habitat (NNH) is important to maintain their therapeutic importance. Here, the bacterial endomicrobiome of Podophyllum hexandrum plants of natural habitat (NH; Kardang and Triloknath locations) and NNH (Palampur location) was identified and its association with the biosynthesis of podophyllotoxin (PTOX) was revealed. Rhizomes (source of PTOX) of plants of NH had highest endophytic bacterial diversity compared to NNH-plants.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia.
The redox state of the plastoquinone (PQ) pool in thylakoids plays an important role in the regulation of chloroplast metabolism. In the light, the PQ pool is mostly reduced, followed by oxidation after light cessation. It has been believed for a long time that dark oxidation depends on oxygen, although the precise mechanisms of the process are still unknown and debated.
View Article and Find Full Text PDFCurr Drug Deliv
January 2025
Department of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
Objective: DSPE-mPEG2000 is a phospholipid and polyethylene glycol conjugate used in various biomedical applications, including drug delivery, gene transfection, and vaccine delivery. Due to the hydrophilic and hydrophobic properties of DSPE-mPEG2000, it can serve as a drug carrier, encapsulating drugs in liposomes to enhance stability and efficacy.
Method: In this study, long-circulating podophyllotoxin liposomes (Lc-PTOX-Lps) were prepared using DSPE-mPEG2000 as a modifying material and evaluated for their pharmacokinetics and anticancer activity.
Sci Rep
December 2024
Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran.
Podophyllotoxin (PTOX), produced by Linum album, is a monolignol that participates in plant defense strategies. Our previous study established that methyl jasmonate (MeJA) significantly stimulates PTOX production in L. album cells.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro 152-8552, Japan.
The development of a reaction system for direct epoxidation of propylene is an essential topic. Gas-phase electro-epoxidation of propylene to propylene oxide (PO) with water as the oxidant was successfully accomplished by using solid-polymer-electrolyte (SPE) electrolysis without solvents. The oxidized surface of the PtOx anode was essential for propylene epoxidation and oxidation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!