Microbial filter feeders are an important group of grazers, significant to the microbial loop, aquatic food webs, and biogeochemical cycling. Our understanding of microbial filter feeding is poor, and, importantly, it is unknown what force microbial filter feeders must generate to process adequate amounts of water. Also, the trade-off in the filter spacing remains unexplored, despite its simple formulation: A filter too coarse will allow suitably sized prey to pass unintercepted, whereas a filter too fine will cause strong flow resistance. We quantify the feeding flow of the filter-feeding choanoflagellate using particle tracking, and demonstrate that the current understanding of microbial filter feeding is inconsistent with computational fluid dynamics (CFD) and analytical estimates. Both approaches underestimate observed filtration rates by more than an order of magnitude; the beating flagellum is simply unable to draw enough water through the fine filter. We find similar discrepancies for other choanoflagellate species, highlighting an apparent paradox. Our observations motivate us to suggest a radically different filtration mechanism that requires a flagellar vane (sheet), something notoriously difficult to visualize but sporadically observed in the related choanocytes (sponges). A CFD model with a flagellar vane correctly predicts the filtration rate of , and using a simple model we can account for the filtration rates of other microbial filter feeders. We finally predict how optimum filter mesh size increases with cell size in microbial filter feeders, a prediction that accords very well with observations. We expect our results to be of significance for small-scale biophysics and trait-based ecological modeling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5584453 | PMC |
http://dx.doi.org/10.1073/pnas.1708873114 | DOI Listing |
Microorganisms
January 2025
State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China.
As transitional ecosystems between land and sea, estuaries are characterized by a unique environment that supports complex and diverse microbial communities. A comprehensive analysis of microbial diversity and ecological processes at different trophic levels is crucial for understanding the ecological functions of estuarine ecosystems. In this study, we systematically analyzed the diversity patterns, community assembly, and environmental adaptability of bacterial and protist communities using high-throughput sequencing techniques.
View Article and Find Full Text PDFMicroorganisms
January 2025
Department of Basic Oncology, Institute of Health Sciences, Ege University, 35100 Izmir, Turkey.
The pancreas, previously considered a sterile organ, has recently been shown to harbor its own microbiota that may influence tumor biology and patient outcomes. Despite increasing interest in the impact of the microbiome on cancer, the relationship between pancreatic tissue and oral microbiomes in pancreatic ductal adenocarcinoma (PDAC) remains limited. In this study, the oral and pancreas tissue microbiomes of patients with PDAC were compared to patients with other periampullary cancers (DC/AC) and a healthy control group using 16S rRNA gene sequence analysis.
View Article and Find Full Text PDFBioresour Technol
January 2025
Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044 China. Electronic address:
Iron-carbon (Fe-C) based biofilters have shown significant advantages in treating mariculture wastewater by facilitating the mixotrophic heterotrophic nitrification-aerobic denitrification (HNAD) process. However, the effects of Fe-C materials and varying carbon-to-nitrogen (C/N) ratios on N removal and C reduction performance remain insufficiently explored. This study demonstrated that the Fe-C biofilter (R-Fe) achieved significantly higher NO-N removal efficiency (65.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center- University of Freiburg, Faculty of Medicine, University of Freiburg, University of Freiburg, Freiburg, Germany.
Objective: Helicobacter pylori is known for colonizing the gastric mucosa and instigating severe upper gastrointestinal diseases such as gastritis, gastroduodenal ulcers, and gastric cancer. To date, there is no data available on the oral cavity as transmission site, whether H. pylori can survive in the oral cavity or in human saliva.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Office of Applied Science, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, USA.
As a diverse and complex food matrix, the animal food microbiota and repertoire of antimicrobial resistance (AMR) genes remain to be better understood. In this study, 16S rRNA gene amplicon sequencing and shotgun metagenomics were applied to three types of animal food samples (cattle feed, dry dog food, and poultry feed). ZymoBIOMICS mock microbial community was used for workflow optimization including DNA extraction kits and bead-beating conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!